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A B S T R A C T

This study presents a new, open-source modelling software entitled ‘Just Another Bayesian Biomass Assessment’
(JABBA). JABBA can be used for biomass dynamic stock assessment applications, and has emerged from the
development of a Bayesian State-Space Surplus Production Model framework, already applied in stock assess-
ments of sharks, tuna, and billfishes around the world. JABBA presents a unifying, flexible framework for bio-
mass dynamic modelling, runs quickly, and generates reproducible stock status estimates and diagnostic tools.
Specific emphasis has been placed on flexibility for specifying alternative scenarios, achieving high stability and
improved convergence rates. Default JABBA features include: 1) an integrated state-space tool for averaging and
automatically fitting multiple catch per unit effort (CPUE) time series; 2) data-weighting through estimation of
additional observation variance for individual or grouped CPUE; 3) selection of Fox, Schaefer, or Pella-
Tomlinson production functions; 4) options to fix or estimate process and observation variance components; 5)
model diagnostic tools; 6) future projections for alternative catch regimes; and 7) a suite of inbuilt graphics
illustrating model fit diagnostics and stock status results. As a case study, JABBA is applied to the 2017 as-
sessment input data for South Atlantic swordfish (Xiphias gladius). We envision that JABBA will become a widely
used, open-source stock assessment tool, readily improved and modified by the global scientific community.

1. Introduction

Surplus Production Models (SPMs) are among the least parameter
and data demanding population models that can produce estimates of
Maximum Sustainable Yield (MSY) and associated fisheries reference
points. Despite a number of limitations (Maunder, 2003; Punt and
Szuwalski, 2012; Wang et al., 2014), SPMs remain an integral tool for
data-limited to –moderate stock assessments (Dichmont et al., 2016;
Punt et al., 2015) and meta-analyses of global fisheries (Froese et al.,
2016; Rosenberg et al., 2017; Worm et al., 2009). SPMs approximate
changes in biomass as a function of the biomass of the preceding year,
the surplus production of biomass, and the removal by the fishery in the
form of catch and are not differentiated by age and/or size. In SPMs,
somatic growth, reproduction, natural mortality, and associated den-
sity-dependent processes are inseparably captured in the interplay of
the two major parameters: the intrinsic rate of population increase r and
carrying capacity K. The model requires an index of abundance, catch
records, and an estimate of initial biomass (Prager, 1994).

A major criticism of SPMs is that they ignore the stock’s size/age
structure and therefore fail to account for dynamics in gear selectivity

(Wang et al., 2014) and lagged effects of recruitment and mortality
(Aalto et al., 2015; Punt and Szuwalski, 2012), which can both lead to
biased assessment results. Although these issues remain a limitation of
SPMs, there has been considerable progress in optimizing the fitting
procedures of SPMs, in consideration that they are continuously im-
plemented by Regional Fishery Management Organizations (RFMOs)
around the world. Such improvements include: Bayesian methods with
improved prior formulations (McAllister et al., 2001); the development
of estimation frameworks that allow incorporating both observation
and process errors using mixed-effects (Punt, 2003; Thorson and Minto,
2015); and Bayesian state-space modelling approaches (Meyer and
Millar, 1999; Millar and Meyer, 2000; Thorson et al., 2014). The
Bayesian framework can reduce uncertainties about estimates of stock
size, productivity, and biomass to carrying capacity ratios by using
reasonably informative priors that incorporate information available
from meta-analyses and published literature on historical stock levels
and population demographics (McAllister et al., 2001; Punt and
Hilborn, 1997). State-space models are regarded as powerful tools for
modelling time-varying abundance indices because they simultaneously
account for both process and observation errors (Buckland et al., 2004;
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de Valpine, 2002; Meyer and Millar, 1999). Process error can account
for model structural uncertainty as well as natural variability of stock
biomass due to stochasticity in recruitment, natural mortality, growth,
and maturation, whereas observation error determines the uncertainty
in the observed abundance index due to measurement error, reporting
error and other unaccounted variations in catchability (Francis et al.,
2003; Meyer and Millar, 1999; Ono et al., 2012). More recently,
Carvalho et al. (2014) investigated incorporating time blocks in SPMs
to allow substantial variability in catchability over time caused by
dominant changes in fishery strategies.

Due to their low data requirements, SPMs persist as a predominant
assessment tool for large pelagic tuna, shark, and billfish assessments
(Dichmont et al., 2016; Punt et al., 2015). The majority of SPMs im-
plemented in RFMO stock assessments are based on third-party soft-
ware, and among the most commonly used are ‘A Stock Production
Model Incorporating Covariates’ (ASPIC; Prager, 2002, 1994) and
‘Bayesian Surplus Production 2’ (BSP2; McAllister, 2014).

ASPIC fits a generalized Pella and Tomlinson (1969) production
function using several indices of abundance and conditions the stock
population dynamics on either catch or effort. Uncertainty in ASPIC is
evaluated with sensitivity tests, and a separate projections module is
available in R. The greatest shortcoming of ASPIC is its inability to
estimate process error, thus providing reference point estimates wholly
reliant on the trends in data inputs alone. Regardless, ASPIC has been
developed for and applied to several stock assessments that have been
conducted by the International Commission for the Conservation of
Atlantic Tunas (ICCAT). These include yellowfin tuna (Thunnus alba-
cares), bigeye tuna (Thunnus obesus), skipjack tuna (Katsuwonus pe-
lamis), albacore (Thunnus alalunga), swordfish (Xiphias gladius), and
billfishes (Dichmont et al., 2016; Neilson et al., 2013; Punt et al., 2015).
The software is provided on the National Oceanic and Atmospheric
Administration’s web-based toolbox as a standalone download (http://
nft.nefsc.noaa.gov/ASPIC.html). Similarly, integrated statistical catch-
at-age frameworks, such as Stock Synthesis (Methot and Wetzel, 2013),
are capable of executing SPMs in a sophisticated modelling environ-
ment, though state-space formulation is not a possibility therein.

BSP2 (McAllister, 2014) is an updated version of ICCAT’s determi-
nistic Bayesian surplus production model (BSP) software documented in
McAllister and Babcock (2006). The essential improvement of BSP2
over BSP is the implementation of a state-space approach, so that the
user may include process error. Like ASPIC, BSP2 uses a Pella-Tom-
linson production function, but the shape parameter is constrained to
low values when biomass is less than biomass at sustainable yield
(BMSY) to avoid unrealistically high estimates of population increase at
low population size (McAllister et al., 2000). A projection function for
BSP2 was developed in 2012. The most current version of BSP2 has
been developed through implementations in assessments of numerous
Canadian fish stocks, as well as pelagic fish stocks in the Atlantic and
Pacific oceans including North Pacific blue shark, Atlantic yellowfin,
bigeye, and bluefin tuna, and billfishes. Historically, BSP2 was avail-
able on the ICCAT Stock Assessment Software Catalog.

Third-party software presents advantages by allowing analysts to
explore varied assessment configurations and facilitating the peer-re-
view of assessments. However, changes to such programs may be slow
as development relies on few developers, and the record of issues ad-
dressed may be unclear. Sometimes, for independent software, access
and collaboration with the original developer may be limited by web-
site issues and it may be unclear to whom problems should be directed.
Some fisheries scientists construct their own models from scratch, ty-
pically vetted internally by those involved with the singular assessment
at hand. Code written independently for standalone assessments carries
the risk of version corruption and likely presents redundancies or cru-
cial discrepancies between similar models. All such assessments would
benefit greatly from sourcing a standardized, central protocol from
which changes could be suggested, implemented, and archived for the
fishery in question.

The ubiquity of SPM use across RFMOs presents a clear need for a
unified approach that is reproducible, well-documented, and easily
implemented for a variety of fisheries. The open-source platform
GitHub provides a means for fisheries scientists to share, document, and
improve assessment procedures in a standardized manner, greatly re-
ducing time spent constructing redundant models, and democratizing
modelling approaches across nations. Hosting such tools in a globally-
accessible repository also increases transparency in the assessment
workflow; enables rapid, continuous modification of the code not lim-
ited to a single developer (via “forks”), and acts as an archive of model
improvements over time (via the “issues” tracker).

This study presents a new, open-source modelling framework called
‘Just Another Bayesian Biomass Assessment’ (JABBA). The name is a
reference to JAGS (Just Another Gibbs Sampler, Plummer, 2003),
which is the language in which the Bayesian algorithm is executed.
JABBA is a generalized Bayesian State-Space Surplus Production Model
and represents an innovative approach to biomass dynamic modelling.
The motivation for developing JABBA was to provide a user-friendly R
(R Development Core Team, 2013) to JAGS (Plummer, 2003) interface
for fitting generalized Bayesian State-Space SPMs to generate re-
producible stock status estimates and diagnostics for a wide variety of
fisheries. Specific emphasis has been placed on flexibility for specifying
alternative model scenarios and achieving high stability and con-
vergence rates throughout the development process. The open source
R/JAGS interface provides a means to rapidly modify and run standard
assessment scenarios, while still enabling the experienced user to cus-
tomize the easily accessible R/JAGS source code for specific purposes.
In this manuscript, several core features of JABBA are illustrated using
data from the 2017 South Atlantic swordfish stock assessment con-
ducted through ICCAT.

2. Materials and methods

JABBA emerged from the development of improved optimization
procedures in Bayesian state-space modelling approaches (Meyer and
Millar, 1999; Millar and Meyer, 2000), which were subsequently ap-
plied and tested for assessments of South Atlantic blue shark (ICCAT,
2016), North Pacific blue shark (ISC, 2017), Mediterranean albacore
(ICCAT, 2017a), North and South Atlantic shortfin mako shark (ICCAT,
2017b), and South Atlantic swordfish (ICCAT, 2017c). Features of
JABBA include: 1) an integrated state-space tool for averaging and
automatically fitting multiple catch-per-unit-effort (CPUE) time series;
2) data-weighting through an estimation of additional observation
variance for individual or grouped CPUE; 3) selection between Fox,
Schaefer, or Pella-Tomlinson production functions, with the option to
estimate the function as BMSY/K; 4) options to fix or estimate the pro-
cess and observation variance components; 5) model diagnostics tools;
6) future projections for alternative catch regimes; and 7) a suite of
inbuilt graphics illustrating model fits and diagnostics, surplus pro-
duction estimates, historical stock status trajectories, Kobe plot, and
future projections.

A JABBA assessment model is comprised of user-selected model
processes, data, and statistical methods for comparing data to model
predictions. A crucial development in the JABBA framework is the
model diagnostic step, which aids in checking for parameter and model-
structure misspecification and aims to avoid convergence errors.
Systematic misfit to data or conflict between abundance indices within
an assessment model should be considered a diagnostic of model mis-
specification. Unacceptable model fits (i.e., model estimates which do
not match the data) can be detected by either the magnitude of the
residuals being larger than implied by the observation error, or trends
in residuals indicating systematic misfit (Carvalho et al., 2017). Data
conflicts occur when different data series, given the model structure,
provide conflicting information about important aspects of the dy-
namics. Unacceptable model misfit or data conflict can be dealt with by
either data weighting or changing the model structure (Maunder and
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Piner, 2015). The ultimate goal of the diagnostic process is to create a
dynamic model using all data inputs that fit the observations and are
internally consistent. Internal consistency implies that all data are fit
well, and their observational errors and residual trends are minimized.
Fig. 1 shows a schematic of the modelling approach and internal
structure of the JABBA model workflow.

2.1. JABBA model formulation

With JABBA, we seek to provide a generalized Bayesian state-space
estimation framework for surplus production models (SPMs) by
building on previous formulations by Pella and Tomlinson (1969),
Gilbert (1992); (Wang et al., 2014) and Fletcher (1978); (Thorson et al.,
2012). The surplus production function is formulated with the gen-
eralized three parameter SPM by Pella and Tomlinson (1969) of the
form:
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where r is the intrinsic rate of population increase at time t, K is the
carrying capacity, B is stock biomass at time t, and m is a shape para-
meter that determines at which B/K ratio maximum surplus production
is attained. If the shape parameter m=2, the model reduces to the
Schaefer form, with the surplus production (SP) attaining MSY at ex-
actly K/2. If 0 < m < 2, SP attains MSY at biomass levels smaller than
K/2; the converse applies for values of m greater than 2. The Pella-
Tomlinson model reduces to a Fox model (Fox, 1970) if m approaches
one, resulting in maximum surplus production at∼ 0.37 K, but there is
no solution for the exact Fox surplus production with m=1. The shape
parameter m can be directly translated into the biomass level where
MSY is achieved, BMSY, via the ratio BMSY/K:
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where the fishing mortality is an annual rate defined here as the ratio
of:

=F C
B

,
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where C denotes catch. Correspondingly, MSY can be expressed by:

=MSY F B .MSY MSY (6)

We note that the Pella-Tomlinson formulation provides an approximate
link to an age-structured model. Combining and re-arranging Eqs. (3),
(4), and (6), it follows that r in Eq. (1) can be expressed as:

= −
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B
m
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1
.
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Eq. (2) together with the re-rearranged Eq. (7) emphasizes the potential
of translating estimates of MSY/BMSY and BMSY/K into r and m, re-
spectively (Maunder, 2003; Thorson et al., 2012; Wang et al., 2014).
This presents a crucial bridge for parameters derived from age-struc-
tured equilibrium models (e.g., a per-recruit analysis with integrated
Beverton-Holt recruitment functions) to be implemented in an SPM.

In contrast to the alternative formulation of the Pella-Tomlinson
used in several previous studies (Brodziak and Ishimura, 2012;
Chaloupka and Balazs, 2007; Chang et al., 2014), this parametrization
has the property that for any fixed input values of r and K, SP increases
as m decreases (Fig. 2) due to the inclusion of m-1 as the denominator of
r (Eq. (1)). However, as with the Fletcher parametrization, if m≤ 1, it
has the biologically undesirable property of surplus production per unit
biomass approaching infinity even as biomass approaches zero (Quinn
and Deriso, 1999). This behaviour can be visually inferred from the
close-to-vertical increase in surplus production near the curve’s origin,
in particular for the extremely low value of m=0.1 (Fig. 2).

To address this anomaly, JABBA provides the additional option of
combining the surplus production with a generic “hockey stick” re-
cruitment function developed and tested by Froese et al. (2016). The
hockey-stick, as proposed by Barrowman and Myers (2000), assumes
that recruitment potential becomes increasingly impaired below a given

CPUE input
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Run JABBA model

Retrospective analysis

Generate outputs

Base case established

Sensitivity

Projections

JABBA set 
up

fail

pass

Model 
execution

Optional

Model structure 
sensitivity analysis

JABBA goes FLR

Fig. 1. JABBA workflow. In addition to the modelling framework itself, JABBA presents a new paradigm in model structure, diagnosis, and execution.
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biomass ratio level (Plim= Blim/K), with Plim ranges of 0.2–0.25 having
been widely adopted as thresholds for recruitment overfishing
(Beddington and Cooke, 1983; Myers et al., 1994; Punt et al., 2013).
The linear decrease of the underlying hockey-stick between 1 and 0 is
implemented by introducing the multiplier to the surplus production
function, so that for values of B/K < Plim:

= − <−
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t t t
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This composite model formulation reduces to the Pella-Tomlinson
model as Plim approaches 0. The functional form of the Pella-Tomlinson
hockey-stick formulation is illustrated for Plim= 0.2 in Fig. 2. A notable
property is that for Plim > BMSY/K, Eqs. (4) and (5) do not hold because
maximum surplus production is attained at Plim under such conditions
(Fig. 2). For the condition Plim> BMSY/K, JABBA therefore auto-
matically sets Plim equal to the BMSY/K inflection point.

2.2. State-space implementation

JABBA is formulated on the Bayesian state-space estimation fra-
mework proposed by Meyer and Millar (1999). The biomass By in year y
is expressed as a proportion of K (i.e. Py=By/K) to improve the effi-
ciency of the estimation algorithm. The model is formulated to ac-
commodate multiple CPUE series i. The initial biomass in the first year
of the time series is scaled by introducing model parameter φ to esti-
mate the ratio of the spawning biomass in the first year to K (Carvalho
et al., 2014). The stochastic form of the process equation is given by:
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where ηy is the process error, with ∼η N σ(0, )y η
2 ; process variance σ( )η

2

can be either fixed or estimated. If estimated, the process variance prior
is implemented using an inverse-gamma distribution (see next section);

Cf y, is the catch in year y by fishery f.
The corresponding biomass for year y is:

=B P K ,y y (10)

The observation equation is given by:

= = …I q B e ny 1, 2, , .i y i y
ε

, y i, (11)

where qi is the estimable catchability coefficient associated with the
abundance index i, and εy i, is the observation error, with

∼ε N σ(0, )y i ε y i, , ,
2 ; σε y i, ,

2 is the observation variance in year y for index i
(see further details, Section 2.3.2). The full Bayesian State-Space Sur-
plus Production model projected over n years requires a joint prob-
ability distribution over all unobservable hyper-parameters
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2 and the n process errors relating to the vector of

unobserved states =η η η η{ , , ... )y1 2 , together with all observable data in
the form of the relative abundance indices i, =I I I I{ , , .. }i i i i y,1 ,2 , (Meyer
and Millar, 1999). According to Bayes’ theorem, it follows that joint
posterior distribution over all unobservable parameters, given the data
and unknown states, can be formulated as:
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2.3. JABBA set up

2.3.1. Input fishery data
JABBA requires a minimum of two input comma-separated value

files (.csv) in the form of catch and abundance indices. The ‘Catch’ input
file contains the time series of year and catch by weight, aggregated
across fleets for the entire fishery. Missing catch years or catch values
are not allowed. JABBA is formulated to accommodate abundance in-
dices from multiple sources (i.e., fleets) in a single ‘CPUE’ file, which
contains all considered abundance indices. The first column of the
CPUE input is year, which must match the range of years provided in
the ‘Catch’ file. In contrast to the ‘Catch’ input, missing abundance
index values are allowed, such that different abundance indices may
correspond to smaller portions of the catch time series. Optionally, an
additional ‘se’ input can be passed onto JABBA, containing standard
error estimates associated with the abundance indices on a log scale.
The ‘se’ input is a third file, structurally identical to the ‘CPUE’ input.
Year- and series-specific standard errors are typically derived externally

Fig. 2. Surplus production as a function of biomass for different values of the shape parameter m=0.1–4 (from left to right) using the default Pella–Tomlinson model (left panel) and the
optional Pella-Tomlinson hockey-stick composite model formulation for the case Plim= Blim/K=0.2 (right panel).
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(e.g., from a CPUE standardization model) (Maunder and Punt, 2004).
Therefore, the user can assign as many unique ‘se’ values as there are
unique fleets and years in the time series. Alternatively, this feature can
be used to apply different weighting to individual abundance indices
(Francis, 2011) by assigning varying coefficients of variation (CV) to
each time series. This is optional, and JABBA provides diagnostic plots
to aid the user in identifying whether modifying standard errors may be
beneficial. If such weighting is implemented, it is advised that the CV
chosen for each indexed year approximates the observed standard error
on the log scale, such that the data weights are congruent with ex-
pectations as to how well the model should fit these data.

2.3.2. Prior specification
Most priors are stock-specific and therefore need to be specified by

the user in the controlling R input file, the ‘Prime’ file herein. Key priors
for any SPM assessment are typically the intrinsic rate of population
increase r, the carrying capacity K, and the initial biomass depletion at
the start of the available catch time series φ. JABBA provides two op-
tions to input priors for r and K; either as the mean and standard de-
viation (or CV in the case of K) of a lognormal distribution (Brodziak
and Ishimura, 2012; Meyer and Millar, 1999) or as ranges of minimum
and maximum of plausible values for a uniform distribution (Froese
et al., 2016). Both options are regular choices in assessments. For ex-
ample, mean and standard deviation for r are typically obtained from
Monte-Carlo simulations of demographic equilibrium models
(McAllister et al., 2001), whereas a uniform prior for r may range be-
tween lowest and highest estimates from different studies (ICCAT,
2017b) or approximate ranges based on resilience categories such as
those provided in FishBase (Froese et al., 2016). Whether the corre-
sponding lognormal prior is informative or “flat” depends on the width
of the range. The larger the difference between lower and upper values,
the less informative is the prior. A very wide range will result in a “flat”
uninformative lognormal prior. Because lognormal priors on r and K are
considered to have better convergence properties than uniform priors,
the input ranges are converted into lognormal priors, such that:

= =+ −X σlog( ) and ,X X
r

X X
2

(log( ) log( ))
2

min max min 2

(13)

where X denotes the prior of interest, and σr is the approximated log-
normal standard deviation for the assumed range of values for X.

Similarly, JABBA provides two prior distribution options, lognormal
and beta, for the initial biomass depletion ratio φ. The beta distribution
is provided as an alternative to the commonly used lognormal because
of its desirable property of being bounded by 0 and 1 for depletion
ratios. Here, both distributions can be specified by a mean and CV,
which are then automatically converted into lognormal mean and
standard deviation or beta distribution scale parameters, respectively.

Priors for process variance can be either fixed or estimated. If esti-
mated, the process variance prior is implemented using an inverse-
gamma distribution (Brodziak and Ishimura, 2012; Chaloupka and
Balazs, 2007; Meyer and Millar, 1999). The JABBA default option for
the process variance is ση

2 ∼ 1/gamma(4, 0.01), which corresponds to a
process error mean of 0.059 with 95% confidence intervals at ap-
proximately 0.03 and 0.1 and a CV of 28% (Meyer and Millar, 1999;
Millar and Meyer, 2000). This matches the level of process error where
state-space SPMs are most likely to adequately perform (Ono et al.,
2012; Thorson et al., 2014). Alternatively, the user may select a less
informed inverse-gamma distribution by setting both scaling para-
meters of the inverse-gamma distribution to 0.001 (Brodziak and
Ishimura, 2012; Carvalho et al., 2014; Chaloupka and Balazs, 2007).
This choice of the inverse-gamma distribution implies that the para-
meters are approximately uniform on a log scale.

The user can choose to include process variance for all modelled
years or only starting in the year when the first abundance index be-
comes available. However, it is important to note that catch data alone
are unlikely to hold sufficient information to separate process

deviations from the deterministic population prediction. Therefore,
estimating process error deviations in the absence of auxiliary in-
formation from abundance indices may pose the risk of over-fitting.

According to Francis et al. (2003), the observation variance com-
prises an external estimable observation error σ̂SEand year-to-year
variation in catchability. In JABBA, the total observation variance σε

2 is
separated into three components to further provide the option to dis-
tinguish between fixed input variance σfix

2 and estimable variance σest
2 ,

where the prior for σest
2 assumes an uninformative inverse-gamma dis-

tribution with both gamma scaling parameters set to 0.001 (Chaloupka
and Balazs, 2007). This value can be separately estimated for each
abundance index i. All three variance components are additive in their
squared form (Francis et al., 2003), with the total observation variance
for abundance index i and year y is by given by:

= + +σ σ σ σˆ .ε y i SE y i fix est i, ,
2

, ,
2 2

,
2

(14)

Each variance component can be switched on or off in any combi-
nation to provide flexible data-weighting options to deal with data
conflicts and model misspecifications in stock assessments (Carvalho
et al., 2017; Francis, 2011; Maunder and Piner, 2015). This estimable
observation variance σest

2 can be set to be the same value for all abun-
dance indices, or estimated separately for each index. Adding a fixed
observation error to externally estimated standard errors for abundance
indices is common practice to account for additional sampling errors
associated with abundance indices (Maunder and Piner, 2017), such as
those caused by year-to-year variation in catchability (Francis et al.,
2003). Total observation errors for abundance indices are typically
assumed to range from 0.1–0.4 (Francis, 2011; Francis et al., 2003),
while Francis (2003) suggested that the portion of the observation
variance that accounts for the inter-annual variation in catchability can
typically range from 0.15–0.2. Providing a fixed minimum plausible
observation error will also inform the process variance of the biomass
dynamics, as a portion of total variance is assigned a priori to ob-
servation variance. This can also help to increase model stability and
convergence of state-space models.

2.4. Model execution

JABBA is executed in the R working environment and can be run on
a personal computer. All customization and feature selection as de-
scribed in Section 2.2 are selected via the Prime file. A simulation in-
cluding projections and management plots with 2 chains of 10,000
MCMC iterations each for a single model type can be completed in
under three minutes and can be monitored via a status bar with verbose
updates. The user can specify the number of iterations, burn-in, and
thinning rates as in JAGS to assist with MCMC convergence and chain-
specific diagnostics. To ensure reproducibility, JABBA is distributed
through the global open-source platform GitHub and is accessible free
at https://github.com/JABBAmodel. The repository contains the cur-
rent executable JABBA code, as well as descriptive vignettes and a
working tutorial of the material presented in this manuscript.

2.4.1. Model diagnostics
2.4.1.1. CPUE fit. The principal outputs from a default JABBA run are
designed to give the user a cohesive visualization of their input data,
model diagnostics, and CPUE fit. This enhances JABBA’s utility as a full-
fledged assessment model that can quickly provide material for the
evaluation of a stock’s status. To evaluate CPUE fits, JABBA provides
two plots to illustrate several components of model performance. The
first is called the “JABBA-residual plot” which includes: (1) colour
coded lognormal residuals of observed versus predicted CPUE indices
by fleet, (2) boxplots indicating the median and quantiles of all
residuals available for any given year; the area of each box indicates
the strength of the discrepancy between CPUE series (larger box means
higher degree of conflicting information), and (3) a loess smoother
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through all residuals which highlights systematically auto-correlated
residual patterns. The second plot is similar to those obtained from the
Stock Synthesis output (Methot and Wetzel, 2013) using the program
r4ss (Taylor et al., 2013), and it shows the observed and predicted
CPUE values in log scale, as well as the 95% confidence interval (CI).
JABBA also calculates the Root-Mean-Squared-Error (RMSE) to
quantitatively evaluate the randomness of model residuals. In
addition, the deviance information criterion (DIC) is provided for
model selection purposes. JABBA will output summary results for
CPUE residuals, RMSE, and DIC in a diagnostic results CSV file.

2.4.1.2. MCMC convergence. JABBA is run in JAGS (Plummer, 2003) to
estimate the Bayesian posterior distributions of all quantities of interest
by means of a Markov Chains Monte Carlo (MCMC) simulation. The
JAGS model is executed from R using the wrapper function jags() from
the library r2jags (Su and Yajima, 2012), which depends on rjags. Other
packages and functions, such as ‘jagsUI’ or jags.parallel(), were tested
during the development process. However, we found that jags() without
parallel processing provided the most desirable MCMC mixing
properties, thereby achieving MCMC convergence with a fairly small
number of iterations. A critical issue when using MCMC methods is how
to determine if random draws have converged to the posterior
distribution. In JABBA, convergence of the MCMC samples to the
posterior distribution is monitored via visual inspection of the trace,
and Heidelberger and Welch (Heidelberger and Welch, 1992) and
(Geweke, 1992) and Gelman and Rubin (1992) diagnostics as
implemented in the coda package. To further improve the
convergence properties of JABBA, we developed an optional “soft”
boundary penalty on biomass within the JAGS code, which is enforced
in cases where the biomass to K ratio, Py, decreases below or is either
equal to or greater than user-defined minimum and maximum values,
respectively (default: min= 0.02, max=1). The idea is that the
likelihood is increasingly penalized the further that Py diverges from
the soft boundaries, thereby improving mixing behaviour of MCMC
chains. The implementation appears to particularly increase the
efficiency of process variance posterior convergence.

2.4.2. JABBA management plots
Stock status estimates can be visually classified based on color-

coded biplots that project the biomass (By) and harvest rate (Fy= Cy/
By) at year y as relative to their MSY-based reference points (By/BMSY

and Fy/FMSY). As a default, JABBA produces a Kobe phase plot, which is
widely used in tuna RFMOs (de Bruyn et al., 2013).The Kobe phase plot
represents the status of the stock in terms of By/BMSY on the x-axis and
Fy/FMSY on the y-axis. The plot is divided into four quadrants, defined
for the stock biomass and fishing mortality relative to BMSY and FMSY,
respectively. Use of these biological reference points assumes that
managers have chosen BMSY and FMSY as reference points of interest.
The color-coding is green if By/BMSY > 1 and Fy/FMSY < 1 and red if
By/BMSY < 1 and F/FMSY > 1. However, the color-coding for the other
two quadrants may differ among RFMOs. ICCAT, for instance, does not
separate between the recovering biomass quadrant if Fy/FMSY < 1 and
By/BMSY < 1 and the quadrant of higher fishing mortality if Fy/
FMSY > 1 and By/BMSY < 1. Both are illustrated in yellow, whereas the
Indian Ocean Tuna Commission (IOTC), for example, visually separates
the recovering biomass quadrant from the higher fishing mortality
quadrant by using yellow and orange, respectively. JABBA provides the
user options to produce either version. In addition, an alternative ‘post-
modern’ three-phase biplot (red, yellow, green) can be produced, which
allows separating between target and limit reference points by closely
following the principles put forward in Quinn and Collie (2005). In all
biplot types, two-dimensional kernel density estimates are used to il-
lustrate the confidence regions corresponding to the approximate 50%,
80%, and 95% credibility intervals for the F/FMSY and B/BMSY poster-
iors for the terminal year. Estimated probability that the stock is in the
respective quadrant of the Kobe plot is provided in the legend of the
plot.

In conjunction with the Kobe plot, JABBA produces the ‘SP-phase-
plot’, which plots the surplus production (SP) curve along with the
catch trajectory (y-axis) over the biomass range between 0 and K (x-
axis). Conceptually, if current catch falls in the area below the SP curve,
biomass is predicted to increase given that SP> Catch. The maximum
SP is equivalent to MSY, which corresponds to BMSY on the x-axis. The
inflection point at MSY is highlighted together with a shaded area de-
noting its 95% credibility region. The plot background follows the color
scheme of the Kobe phase plot to facilitate interpretation. Additionally,
it superimposes plot regions where biomass can recover under a

Fig. 3. Illustrations of trends in CPUE indices according to Scenario I (a), II (b), and III (c)
for South Atlantic swordfish, which were produced using the state-space CPUE averaging
tool implemented in JABBA. The underlying abundance trend is treated as an un-
observable state variable that follows a log-linear Markovian process, so that the current
mean relative abundance was assumed to be a function of the mean relative abundance in
the previous year, an underlying mean population trend and lognormal process error
term. The CPUE indices are aligned with the base index via estimable catchability scaling
parameters.
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constant quota while in the red overfished state (B < BMSY, F > FMSY,

but SP > Catch). We also note that a constant quota would lead to
overfishing if catch is above MSY despite the stock currently being in
the green ‘sustainable’ (F < FMSY, B > BMSY, but MSY < Catch).

Further details and interpretation of the ‘SP-phase-plot’ are presented in
the results Section 4.

Fig. 4. JABBA residual diagnostic plots for various South Atlantic swordfish CPUE series under the three examined for Scenario I (a), II (b), and III (c). Boxplots indicate the median and
quantiles of all residuals available for any given year, and solid black lines indicate a loess smoother through all residuals.
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Fig. 5. JABBA fits to the standardized catch-per-unit-effort (CPUE) (in log scale) data sets from different fisheries for the JABBA base case scenario. The solid line is the model predicted
value and the circles are observed data values. Vertical lines represent the estimated 95% confidence intervals around the CPUE values.
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2.5. Optional features

2.5.1. State-Space model for averaging of abundance indices
An integrated state-space tool provides a means to average multiple

relative abundance indices. The average relative abundance is treated
as an unobservable state variable that follows a log-linear Markovian
process. The current mean relative abundance μy was assumed to be a
function of the mean relative abundance in the previous year μy-1, an
underlying mean population trend β and a lognormal process error term
η. The process equation is formulated as:

= + + ∼=μ μ β η η N σlog( ) log( ) (0, ),y y η1
2

(15)

and the corresponding observation equation is:

= + + ∼I q μ ε ε N σlog( ) log( ) (0, ),i y i y i y i y ε i y, , , , ,
2

(16)

where Iy i, is the relative abundance value for year y and index i, ση
2 is the

process error variance, εi y, is the lognormal observation error term, σε i y, ,
2

is the total observation error variance for year y and index i as given by
Eq. (10), and qi is the catchability scaling parameter for index i. The
abundance index with the earliest record (in order of occurrence) is
taken as a reference index by fixing q1 =1, and the others are scaled to
this reference index, respectively. The trend β has a flat normal prior,
the scaling catchability coefficients follow a non-informative inverse-
gamma distribution qi∼ 1/dgamma(0.001,0.001) and process and ob-
servation variance estimation is implemented as for the full JABBA
model. This tool allows aligning multiple abundance indices at com-
parable scales for an initial inspection of an overall mean trend and
potentially conflicting trends among time series.

2.5.2. Retrospective analysis
Retrospective analysis is another diagnostic approach widely used

in stock assessments to evaluate the reliability of parameter and re-
ference point estimates (Cadigan and Farrell, 2005; Hurtado-Ferro
et al., 2014; Mohn, 1999). As an additional model performance diag-
nostic, we enabled the retrospective analysis procedure, which involves
fitting a stock assessment model to the full dataset. The same model is
then fitted to truncated datasets where the data for the most recent
years are sequentially removed. Retrospective analysis is designed to
reveal systematic bias in the estimation of B or F which could, for ex-
ample, result from model mis-specification. In stock assessment, the ρ
statistic proposed by Mohn (1999) is commonly used to evaluate the
severity of retrospective patterns (Deroba, 2014). In JABBA, Mohn’s ρ is
calculated for biomass using the formulation proposed by Hurtado-
Ferro et al. (Hurtado-Ferro et al., 2014)

⎜ ⎟= ⎛
⎝

− ⎞
⎠

− −

−
ρ

X X
X

,Y y p Y y

Y y

, ,ref

,ref (17)

where X is the quantity for which Mohn’s ρ is being calculated, Y the
final year of the assessment period, y the last year of a given “peel” p,

and ref the reference peel, which is the most recent assessment.

2.5.3. Projections
Users may elect to perform model projections to explore various,

user-defined total future catch management scenarios across a given
number of simulation years. Joint posteriors of B, F, and the ratios B/K,
B/BMSY and F/FMSY are projected by passing on future catch trajectories
to JAGS. The resulting 4-dimensional posterior matrix can be saved as
an R object for further processing, for example, using the Fisheries li-
brary FLR (Kell et al., 2007). The inbuilt trajectory plot illustrates tra-
jectories of the biomass depletion B/K and associated uncertainty over
the range of specified catch values.

3. Case study: South Atlantic swordfish

The broadbill swordfish is the most widely distributed billfish spe-
cies. In the Atlantic Ocean, fisheries catching swordfish are managed by
ICCAT (see Neilson et al., 2013 for a review). In 2017, ICCAT carried
out the latest stock assessment for the Atlantic swordfish stocks using
four different assessment models: Stock Synthesis, BSP2, ASPIC, and
JABBA (ICCAT, 2017c). Only the BSP2 and JABBA were applied to the
South Atlantic stock (hereinafter referred as SA SWO) because of data
availability. Both models produced very similar stock status results.
Given considerations that JABBA is written in the open-source R/JAGS
interface with more capabilities for future evolutions, it was re-
commended that management advice, including stock status and pro-
jections, should be based on the JABBA model (ICCAT, 2017c). In this
case study, we focused specifically on illustrating the JABBA framework
applied for this stock assessment. The results presented below are not
intended to describe the full results, modelling and parameter choices,
or management recommendations for the SA SWO stock assessment,
but instead to illustrate the application and implementation of JABBA
to an actual stock. For detailed information on the SA SWO stock as-
sessment, please see ICCAT (2017c).

3.1. JABBA set-up for S. Atlantic swordfish

3.1.1. Input fishery data for S. Atlantic swordfish
In addition to a total catch time series, the following CPUE time

series were made available for the SA SWO stock assessment (see
Fig. 3): Brazil 1 (1978–2004), Brazil 2 (2005–2012), EU-Spain
(1989–2015), Japan (1990–2015), Uruguay (2001–2012), and South
Africa (2004–2015). Models were evaluated in detail assuming a Pella-
Tomlinson production function with the BMSY/K fixed at 0.4.

3.1.2. Prior formulations for S. Atlantic swordfish
Preliminary analysis conducted during the 2013 Atlantic SWO stock

assessment showed that abundance indices were uninformative with
respect to carrying capacity for SA SWO (ICCAT, 2014). A null hy-
pothesis was formulated in which the carrying capacity per unit sea
surface area in the range of SA SWO was presumed to be the same as
that for North Atlantic SWO. The prior for K for SA SWO was thus
obtained using the posterior for K from the North Atlantic SWO stock
assessment model (ICCAT, 2014). This approach was also used in the
2017 SA SWO stock assessment, which resulted in a vaguely in-
formative lognormal prior for K at 200,000 metric tons with a CV of
200% (ICCAT, 2017c). For r, a lognormal prior (mean= log(0.42),
sd= 0.37) was assumed which was originally developed by McAllister
(2014) using Leslie matrix population simulations. The initial biomass
depletion prior (φ=B1950/K) was input in the form of a lognormal
prior, which assumes that the SA SWO stock was at K in 1950 with a
CV=0.25. All catchability parameters were formulated as unin-
formative uniform priors, while the process variance and observation
variance priors were implemented by assuming the following inverse-
gamma distributions:

Table 1
Summary of posterior estimates (medians) and 95% Bayesian Credibility Intervals (C.I.s)
of parameters from the South Atlantic swordfish JABBA base case scenario.

JABBA estimates

Median 2.5% 97.5%

K (t) 111468.8 78494.5 163251.8
r 0.372 0.239 0.558

=φ B K/1950 0.871 0.618 1.052
ση 0.055 0.032 0.095
FMSY 0.313 0.201 0.469
BMSY (t) 44585.5 31396.4 65297.7
MSY (t) 13978.3 12616.1 15370.5
B2015/BMSY 0.747 0.545 1.018
F2015/FMSY 0.985 0.723 1.313
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gamma
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(4, 0.01)η

2

(18)

∼σ
gamma

1
(0.001, 0.001)est i,

2

(19)

where σest i,
2 was estimated separately for each abundance index i.

The process variance prior corresponds to a mean process error of
ση =0.056 (CV=0.65). Because most of the indices provided were
considered over-precise with CVs < 0.1, an additional observation
error variance of σfix

2 =0.22 was added a priori to SEs of all time series
using the fixed observation error option in JABBA, so that the total
observation variance is given by:

Fig. 6. Prior and posterior distributions of key model parameters for the South Atlantic swordfish JABBA base case scenario. Posteriors distributions are plotted using generic kernel
densities.
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3.1.3. Optional features: retrospective analysis and future projections
A retrospective analysis was conducted for the last 6 years of the

assessment time horizon to evaluate whether there were any strong
changes in model results based on data availability. The selected period
for the retrospective analysis was intended to cover two previous stock
assessment cycles for the SA SWO. In addition, future projections for
years 2015–2025 were developed. The simulations varied among a
sequence of future catches from 4000 to 16,000 tons. The initial catch
for the years 2016–2017 was set to the 2016 preliminary total catch
reports of 10,056 tons.

4. Results

We have structured the description of results from the SA SWO case
study to mirror the “Model Execution” section of the workflow sche-
matic (Fig. 1). The goal is to provide a guide for the reader on how to
interpret and customize stock assessments within the JABBA frame-
work.

The first JABBA model for the SA SWO (Scenario I) included all
CPUE indices available and (Fig. 3a) no additional model structure. The
initial fit to Scenario I provided evidence that Brazil 1 CPUE, which was
characterized by high variation, disguised the abundance signals of the
other CPUE indices (Fig. 4a). This resulted in an overall poor fit asso-
ciated with a high root mean squared error (RMSE) of 33.4%, which in
this case was considered to fail the model diagnostic. Excluding Brazil 1
(Fig. 3b), CPUE (Scenario II) slightly improved the fit (RMSE=26.7%),
but revealed notable data conflicts between the standardized CPUE
from Japan (1990–2015) and EU-Spain (1989–2015); therefore, this
model was also considered to fail the diagnostics (Fig. 4b). The third
model (Scenario III) was built after scientific experts suspected that, for
Scenario II, the introduction of “American-style” gear had caused
changes in swordfish catchability in the Spanish and Japanese fleets,
and that those changes were not adequately captured in the standar-
dization of those indices. Therefore, in Scenario III, additional time-
blocks in catchability were implemented for EU-Spain and Japan
(Fig. 3c). These changes in model structure implemented in Scenario III
(Fig. 4c) substantially improved the residual pattern (RMSE=20.7%).
All three scenarios were able to converge adequately as judged by the
Geweke (1992) and Heidelberger and Welch (1983) diagnostic tests,
and via visually-evaluated stationary behaviour of the MCMC chains
(Fig. A1).

Given the evidence of improved RMSE values alone, Scenario III was
selected as the most plausible base case scenario (see discussion section
for elaboration on the nature of model selection under JABBA’s

diagnostic framework). The fits to the abundance indices were varied,
but generally within the 95% CI. Overall, trends in observed and pre-
dicted CPUE were notably consistent for most indices included in the
base case model. However, there was a distinct lack of fit for the EU-
Spain index (1989–1999), which resulted in relatively wide confidence
intervals due to larger model-internal estimates of σest i, (Fig. 5). Model
parameter and stock status estimates are presented for the base-case
scenario in Table 1. The routine JABBA output plot, showing the pos-
teriors and the assumed prior distribution for the key model parameters
provided no evidence of severe prior misspecification (Fig. 6). The
retrospective analysis of predicted trend in stock biomass By (Fig. 7a)
showed a moderate retrospective pattern for the recent most recent
assessment period 2009–2015 (Fig. 7b), with a mean value of Mohn’s

= −ρ 1.49.
Degrees of stock depletion and overfishing in the base case model

were illustrated using the “Kobe plot” (Fig. 8a). The current biomass
(B2015) is 27% below BMSY, and the current fishing mortality (F2015) is
0.01% below FMSY. The confidence regions of the 2015 stock status
posterior (50%, 80%, and 95% CI) straddle the boundary between the
red and yellow regions with almost equal probability. The cumulative
probability of the red and yellow regions suggests that current biomass
levels are below BMSY with a 98.5% probability. Yet, on inspection of
the SP-phase plot (Fig. 8b), biomass is expected to increase if catch were
maintained at current levels, considering that surplus production is
notably larger than recent catches. This also helps explain the quick
recovery suggested by projections under various future catch scenarios
(Fig. 8c), which predict that stock levels around BMSY would be already
attained by 2018 under current catch levels of∼ 10,000 tons (Fig. 8c).
Even a substantial increase to a future catch of 14,000 tons from 2018
onwards is predicted to attain median biomass level at BMSY over the
10-year projection period, albeit associated with considerably higher
risk given the current uncertainty about the stock status. In summary,
all three plots in conjunction prove useful for interpreting the stock
status, with the newly designed SP-phase plot presenting a valuable
additional perspective to the Kobe plot for evaluating stock status de-
velopments in relation to catch trajectories.

5. Discussion

The Bayesian state-space surplus production modelling tool JABBA
presents a unifying yet flexible open-source stock assessment frame-
work for biomass dynamics models. Several core JABBA features are
illustrated using the recent 2017 ICCAT South Atlantic swordfish as-
sessment as a case study, which is one of a few assessments already
recommended for management for which JABBA was a candidate
model (ICCAT, 2017c). The assessment input data comprised multiple,

Fig. 7. Estimated trajectories (a) for stock biomass By and retrospective analysis (b) for the South Atlantic swordfish JABBA base case scenario. Grey-shaded areas denote 95% confidence
intervals. The label “Reference” indicates the base case model fitted to the entire time series 1950–2015. The numeric year label indicates the retrospective results from the retrospective
peel that includes data through to the referenced year. The mean value Mohn’s ρ for Biomass (2009–2015) is −1.49.
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partially conflicting, fisheries-dependent abundance indices over
varying time spans, as is commonly encountered in assessments of pe-
lagic fishes. Our case study demonstrated how iterative examination of

diagnostic plots can be used to improve model fit, specifically via the
introduction of time-blocked changes in catchability. This feature en-
abled us to identify and resolve data conflicts and settle upon a base
case scenario, which was then used to infer the current stock status and
make future projections under varying catch quotas.

JABBA is generalized in the sense that the production function can
take on various forms, including conventional Fox and Schaefer pro-
duction functions, and can be fit using a variety of error assumptions.
JABBA is especially easy to use due to the modulated coding structure,
which enables the user to simply turn features on or off from the Prime
file, as described in Section 2.3.2. For example, by simply changing the
settings in the Prime file, it is possible to compare observation error and
process error models against a full state-space (total error) im-
plementation, where both variance components are estimable (Ono
et al., 2012; Punt, 2003). This structure resembles that of Stock
Synthesis (Methot and Wetzel, 2013). JABBA also provides the option
to save posteriors of stock trajectories (e.g. B/BMSY, F/FMSY, or B/K) in
the form of multi-dimensional array Rdata objects, rendering JABBA
outputs directly transferable to other platforms for further processing,
such as the Fisheries library FLR (see example in Fig. A2).

A central focus during JABBA development was the workflow
paradigm, illustrated in Fig. 1, which emphasizes the user’s reliance
upon diagnostic tools in the model fitting process. To this end, JABBA
routinely produces the newly designed JABBA-residual plot type to aid
in identifying poor fits and potential data conflicts among multiple
abundance indices. Supporting goodness-of-fit statistics are provided in
the form of the residual-mean-squared errors (RMSE). RMSE is a good
measure of how precisely the model predicts the response and is the
most important criterion in evaluating model fit if the purpose of the
model is prediction. However, the best measure of model fit ultimately
depends on the analyst's objectives. There is no guarantee, neither by
JABBA nor by any stock assessment model, that a model with a great
goodness-of-fit score adequately reflects the population dynamics of the
stock.

Aside from technical features, JABBA is purposefully designed to
run on a personal computer, which adds a revolutionary ability to
quickly manipulate and test models even during weeklong RFMO as-
sessment meetings. Most formal reviews of stock assessments take place
during week-long meetings, for which the majority of model develop-
ment and documentation is completed a priori. However, it is common
for reviewer feedback to be incorporated into the assessment run during
the meeting itself, with the intention of evaluating the impacts of al-
ternative model structure and data on stock assessment results. For the
SA SWO stock assessment with the MCMC specifications presented here,
a single user is able to generate model outputs, including plots and
diagnostics, for all three scenarios and projections for the base case in
under 10min.

Considering the rapid uptake of JABBA by multiple RFMOs, the
expectation that subsequent assessments follow suit plus the continued
need for transparency and reproducibility in assessment science, we
chose to host JABBA on the open-source platform GitHub. The re-
pository will retain fully reproducible tutorials of the assessment in-
cluded in this case study. This will promote the development of addi-
tional modules, as users are free to replicate and contribute to the
JABBA code in real time.

Fig. 8. a) Kobe phase plot for the JABBA base case scenario showing the estimated tra-
jectories (1950–2015) of B/BMSY and F/FMSY. Different grey shaded areas denote the 50%,
80%, and 95% credibility interval for the terminal assessment year. The probability of
terminal year points falling within each quadrant is indicated in the figure legend. b)
JABBA SP-phase plot showing estimated surplus production curves and catch/biomass
trajectories as a function of biomass shown for the base case scenario. MSY estimates are
illustrated with 95% C.I.s (grey shaded area). c) Projections (2016–2025) based on the
JABBA base case scenario over a sequence of future catches from 10,000–18,000 tons.
The initial catch for the years 2016–2017 was set to the 2016 preliminary total catch
reports of 10,056 tons. The dashed line denotes BMSY.
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An example of an optional extension has been implemented in
JABBA in the form of the ‘surplus production and recruitment’ com-
posite function (known as the hockey-stick function), which has been
proposed and applied by Froese et al. (2016) to prevent the problem of
overoptimistic stock status estimates and recovery potential for severely
depleted stocks. The incorporation of the generic hockey-stick function
through a simple multiplier has the desirable property of preventing
surplus production per unit biomass approaching infinity at very low
abundance (Fig. 2). As such, it closely resembles the underlying prin-
ciple for the implementation of the Fletcher-Schaefer composite models
in BSP2 (McAllister, 2014; McAllister et al., 2000) and a derivation
thereof used in Depletion-Based Stock Reduction Analysis (DB-SRA;
Dick and MacCall, 2011) to closely approximate the properties of an
underlying Beverton and Holt stock recruitment function. Future
JABBA extensions could include options for hierarchical (i.e. “hyper”)
prior specifications (Jiao et al., 2009), time-varying catchability
(Wilberg et al., 2009) or productivity (Chang et al., 2014) estimation
approaches, and testing non-proportionality in abundance indices
(Davies and Jonsen, 2011). JABBA is also based on the assumption that
catch observations are error free, which will usually not be true. It is
possible to address this issue by modelling harvest rates as a separate
and unobserved process (Pedersen and Berg, 2017). In such a for-
mulation harvest rates can be estimated at any time even when catch
information is not available. Further developments of JABBA should
allow annual estimates of uncertainty in catch to be included in the
assessment model fitting, which is then reflected in the uncertainty of
estimated model parameters and management quantities.

JABBA is implemented as a flexible, user-friendly open-source tool
to promote reproducibility and provide a platform for future research.
The fairly fast convergence properties should encourage more extensive
use of simulation-testing evaluations of Bayesian state-space surplus
production models, which is currently limited to a few studies (Chang
et al., 2014; Dichmont et al., 2016; Ono et al., 2012). An interesting
research perspective is to potentially improve the comparability be-
tween age-structured models and JABBA by linking the parameteriza-
tion of the production and shape parameters to dynamic pool models
with integrated spawner-recruitment relationship (Maunder, 2003). To
this end, we envision that JABBA will become an integral part of stock
assessment tool boxes around the world, with potential applications for
simulation testing and meta-analyses beyond routine assessment ap-
plications.
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