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Standardizing catch and effort data: a review of recent approaches
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Abstract

The primary indices of abundance for many of the world’s most valuable species (e.g. tunas) and vulnerable species (e.g.
sharks) are based on catch and effort data collected from commercial and recreational fishers. These indices can, however, be
misleading because changes over time in catch rates can occur because of factors other than changes in abundance. Catch-effort
standardization is used to attempt to remove the impact of these factors. This paper reviews the current state of the art in the
methods for standardizing catch and effort data. It outlines the major estimation approaches being applied, the methods for
dealing with zero observations, how to identify and select appropriate explanatory variables, and how standardized catch rate
data can be used when conducting stock assessments.
© 2004 Elsevier B.V. All rights reserved.
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. Introduction

Scientific advice on fisheries management is gener-
lly based on the results of the application of some form
f stock assessment technique (Hilborn and Walters,
992). Stock assessment usually involves estimating

he parameters of some form of population dynamics
odel by fitting it to research and monitoring data and
sing the results of the fitting process to estimate quan-

ities (such as the current abundance) that are of interest
o the decision makers. A variety of data types can be
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used when fitting stock assessment models. How
the data generally must include information on at l
the removals due to harvesting and an index of rela
abundance. Although the index of abundance sh
ideally, be based on fishery-independent data colle
methods such as surveys, fishery-independent da
often extremely costly or difficult to collect, in whic
case it must be based on fishery-dependent data. T
fore, assessments of many stocks (e.g. sharks an
nas) are based solely on fishery-dependent data
most common (and easily collected) source of fish
dependent data is catch and effort information f
commercial or recreational fishers, usually sum
rized in the form of catch-per-unit-of-effort (CPU
or catch rate.
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Fig. 1. Catch rate time series for two hypothetical fishers and the trend in raw catch rate (total catch divided by total effort) if the effort expended
by fisher 1 decreases from 80% of the total to 20% over years 1–10.

The use of catch rate as an index of abundance as-
sumes that, at small spatial scales, catch is proportional
to the product of fishing effort and density:

C = qEN (1)

whereE is the fishing effort expended,N the density,
andq the fraction of the abundance that is captured by
one unit of effort (often referred to as the catchability
coefficient).

Re-arranging Eq.(1) leads to the fundamental rela-
tionship between catch rate and density:

C

E
= qN (2)

Eq. (2) can be generalized from a small patch fished
by a single fisher to the entire population fished by
a large fishing fleet (in which caseN is the popula-
tion size rather than density) as long asq is a constant
(independent of time, space, and fishing vessel). How-
ever,q may not be constant, but may change spatially
and temporally due to changes in the composition of
the fishing fleet, where fishing occurs, and when fish-
ing occurs (e.g.Cooke and Beddington, 1984; Cooke,
1985; Hilborn and Walters, 1992). As an example, con-
sider the case in which there are two fishers, and abun-
dance is constant over time, with the result that the
catch rate for each of the fishers is constant over time
(Fig. 1, left panel). If the catch rate for fisher 1 is twice
that for fisher 2 and the fraction the total effort ex-
p total
e ked
d by
t h

there is actually no change in the true abundance of the
resource.

The ability to use catch rate data as an index of abun-
dance therefore depends on being able to adjust for
(i.e. remove) the impact on catch rates of changes over
time of factors other than abundance. This process is
often referred to as ‘catch-effort standardization’. The
dangers associated with basing stock assessments on
‘raw’ catch rates have been known for many years, and
various methods for standardizing catch and effort data
have been developed (e.g.Gulland, 1956; Beverton and
Holt, 1957; Robson, 1966; Honma, 1973), all of which
define the efficiency of a fishing vessel as its ‘fishing
power’ relative to that of a standard (and perhaps even
hypothetical) fishing vessel. The most commonly ap-
plied method prior to the use of generalized linear mod-
eling approaches was that developed byBeverton and
Holt (1957). This method involves selecting a ‘stan-
dard vessel’ and determining the relative fishing power
of all other vessels by

RFPi = Ci/Ei

CS/ES
(3)

where RFPi is the relative fishing power for vesseli,Ci
the total catch by vesseli during the period in which
both the standard vessel and vesseli were in the fishery,
CS the total catch by the standard vessel during the
period in which both the standard vessel and vesseli
were in the fishery,Ei the total days fished (or whatever
measure of fishing effort is chosen) by vesseli during
t essel
i y
t the
s

ended by fisher 1 decreases from 80% of the
ffort in year 1 to 20% in year 10, there is a mar
ecline in the ‘raw’ catch rate (total catch divided

otal effort) over time (Fig. 1, right panel), even thoug
he period in which both the standard vessel and v
were in the fishery, andES the total days fished b

he standard vessel during the period in which both
tandard vessel and vesseli were in the fishery.
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The standardized catch rate for yeart, It, is then
defined as

It =
∑

iCt,i∑
i(RFPi Et,i)

(4)

whereCt,i is the catch by vesseli in yeart, andEt,i the
number of days fished by vesseli in yeart.

Although straightforward to apply, the approach of
Beverton and Holt (1957)does not generalize easily
to deal with multiple factors such as month and area,
and when there is no fishing vessel that has been in the
fishery for many years and can be used as the standard
vessel. Finally, it is not straightforward to determine the
precision of the standardized catch rate estimates; this
information is, however, needed when applying many
of the methods of stock assessment.

More recent methods for standardizing catch and
effort data involve fitting statistical models to the catch
and effort data. The first examples of these methods
were byGavaris (1980)andKimura (1981). However,
the last two decades have seen a proliferation of new
methods to standardize catch and effort data, most of
which extend these methods to some extent. The choice
among these methods should be based on an evaluation
of the underlying assumptions of the models and use
of appropriate statistical tests and diagnostics. Under-
standing of the fishery being modeled may also provide
insight into which method should be used. For exam-
p , and
m be-
t ture
c y be
m

l) of
t izing
c ght
v l on
w con-
s and
h n-
z

ich
a in the
g , as
m es in
w ble.

2. Basic methods

2.1. Generalized linear models

Generalized linear models (GLMs;Nelder and Wed-
derburn, 1972) are the most common method for stan-
dardizing catch and effort data.Gavaris (1980)appears
to have been the first to have used a GLM approach
to standardizing catch and effort data when he ex-
tended the use of multiplicative models for this purpose
(Robson, 1966) by explicitly assuming log-normal er-
rors. Gavaris (1980)applied an analysis of variance
(ANOVA) model (only categorical explanatory vari-
ables) to the natural logarithm of CPUE, assuming
Gaussian error with a constant variance (equivalent to
least-squares estimation) and independence among the
observations.Kimura (1981)extended this approach by
including both categorical and continuous explanatory
variables.

GLMs are defined by the statistical distribution for
the response variable (usually, but not always, catch
rate) and how some linear combination of a set of ex-
planatory variables relate to the expected value of the
response variable. The key assumption of a GLM is
therefore that the relationship between some function
of the expected value of the response variable and the
explanatory variables is linear:

g(µi) = xT
i β (5)

whereg is the differentiable and monotonic link func-
t e
e se
v s,
a

ical
t n lin-
e for
f veral
o to:
( pling
d po-
n bi-
n iate
t tory
v ari-
a izing
le, many fishery systems are inherently nonlinear
ethods that can handle nonlinear relationships

ween catch rate and potential variables that cap
hanges over time and space in catchability ma
ore appropriate.
This paper reviews many (but, by no means, al

he decisions that must be made when standard
atch and effort data. The following sections highli
arious issues related to the choice of the mode
hich to base the analyses and the data set to be
idered, focusing, in particular, on model selection
ow to deal with records for which the effort is no
ero, but the catch is zero.

Most of the catch-effort standardizations on wh
ctual assessments are based are documented
ray literature. We have attempted in this review
uch as possible, to restrict the examples to cas
hich the basic documents are fairly readily availa
ion,µi =E(Yi), xi the vector of sizemthat specifies th
xplanatory variables for theith value of the respon
ariable,1 β is a vector (of sizem) of the parameter
ndYi the ith random variable.

GLMs are a very general and powerful statist
echnique that include, as special cases, Gaussia
ar models (ANOVA, regression), log-linear models

requency data, logistic regression models, and se
thers. In order to apply a GLM, it is necessary
a) choose the response variable, (b) select a sam
istribution for the response variable from the ex
ential family (e.g. normal, exponential, Poisson,
omial, gamma), (c) chose a link function appropr

o the distribution, and (d) select a set of explana
ariables. Year must be one of the explanatory v
bles because the primary objective of standard

1 Includes the intercept by settingx1 = 1 for all i.
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catch and effort data is to detect trends over time in
abundance. This cannot be achieved unless year is in-
cluded in the model (regardless of whether or not it is
statistically significant).

The choice of a statistical distribution for the re-
sponse variable (often also referred to as the ‘error
model’) should take account of the nature of the process
that generated the data being modeled. For example, a
discrete distribution, such as the Poisson or the nega-
tive binomial, may be the most appropriate distribution
if the catch is recorded in individuals. In this case, the
catch, rather than the catch rate, should be the response
variable, and the fishing effort should be included as
an offset (i.e. effort is added to the outcome from the
linear predictor in Eq.(5)) or perhaps as an explana-
tory variable. However, a continuous distribution may
be more appropriate if the catch is in weight, catch rate
is modeled, or a large number of individuals are usu-
ally caught by each unit of effort (e.g. if many units of
effort are combined into a single datum).

Natural (canonical) link functions exist for each of
the distributions in the exponential family. For exam-
ple, the default link function for the normal distribution
is the identity function, while that for the binomial dis-
tribution is the logit function:

ln

(
µi

1 − µi

)
= xT

i β (6)

Nonlinearity in the relationship between the dependent
a Ms
t s,
a ex-
a in-
c ers:

g

w hat
m nse
v

ow-
e rder
t sary.
W ex-
p rical
v ver,
b xam-
p he

year on the catch rate of gemfish (Rexea solandri) off
New Zealand, using a third-order polynomial, whereas
Punt et al. (2001a)modeled the impact of week on catch
rates of blue grenadier (Macruronus novaezelandiae)
off southern Australia, treating each week of the year
as a categorical explanatory variable.

There are several reasons that GLMs remain the
most commonly applied method for standardizing
catch and effort data. These include the availability of
well-tested and user-friendly software to perform the
calculations. Also, some special cases of the GLM ap-
proach (e.g., multiple linear regression) have a long
history in quantitative fisheries science.

2.2. GAMs and GLMMs

Although the great majority of the catch-effort stan-
dardizations have been (and still is) based on the ap-
plication of the GLM approach, two other estimation
frameworks have also been applied.

Generalized additive models (GAMs;Hastie et al.,
2001) are extensions of generalized linear models that
involve generalizing Eq.(5)by replacing the linear pre-
dictor by an additive predictor:

g(µi) = µ+
p∑
j=1

fj(xi) (8)

wherefj is a smooth function (such as a spline or a loess
smoother).

nced
a cho-
s the
m n
o lly
n

to
m
a -
c be-
t atch
r -
p efin
t d
w

s;
P h
b ear
nd explanatory variables can be included in GL
hrough the link function, through interaction term
nd by transforming the explanatory variables. For
mple, nonlinearity can be taken into account by
luding explanatory variables raised to various pow

(µi) = β0 + β1xi,1 + β2x
2
i,1 + β3x

3
i,1 + · · · (7)

herexi,1 is a continuous explanatory variable t
ight be related in a nonlinear way to the respo

ariable.
Raising covariates to various powers should, h

ver, be used with care and, in general, high-o
erms should be avoided unless absolutely neces

e prefer the alternative of discretizing continuous
lanatory variables and treating them as catego
ariables, to raising them to various powers. Howe
oth approaches have been used in practice. For e
le,Ayers (2003)modeled the effects of the day of t
The degree of smoothness achieved is bala
gainst the deviance by a tuning constant, often
en by cross-validation, so that estimation is by
ethod of maximumpenalizedlikelihood rather tha
f maximum likelihood. This gives GAMs a partia
on-parametric aspect.

Bigelow et al. (1999)used a GAM approach
odel the catch rate of swordfish (Xiphias gladius)
nd blue shark (Prionace glauca) in the North Pa
ific, and found highly-nonlinear relationships
ween, for example, latitude and longitude and c
ate.Rodŕıguez-Maŕın et al. (2003)used a GAM ap
roach to determine whether the catch rates of blu

una (Thunnus thynnus) in the Bay of Biscay varie
ith longitude and latitude.
Generalized linear mixed models (GLMM

inheiro and Bates, 2000) extend the GLM approac
y allowing some of the parameters in the lin
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predictor to be treated as random variables. Several
recent analyses of catch and effort data (e.g.Chang,
2003; Miyabe and Takeuchi, 2003; Rodrı́guez-Maŕın
et al., 2003; Brand̃ao et al., 2004; Ortiz and Arocha,
2004) treated some of the parameters as random ef-
fects. In general, random effects have been introduced
into models to deal with interactions between year and
other categorical variables, such as area (see Section5
for further details).

A full discussion of GLMs, GAMs, and GLMMs,
and their advantages and disadvantages, is beyond
the scope of this paper. Interested readers can con-
sult standard textbooks (e.g.,McCullagh and Nelder,
1989; Dobson, 1991; Hastie et al., 2001), the review
by Guisan et al. (2002), and a special issue ofEco-
logical Modelling(Vol. 157, Issues 2 and 3) for more
information about generalized linear and generalized
additive models, their uses, and applications.

2.3. Extracting the year effect and determining its
precision

Most methods used to standardize catch and ef-
fort data estimate a year effect on which an index of
abundance can be based. The year effect usually re-
flects changes in annual abundance, but there is no
reason that a finer, or coarser, temporal resolution
cannot be considered when modeling catch and ef-
fort data. For example,Maunder and Harley (2003)
estimate quarterly standardized catch rate indices for
t acific
O

del.
T log-
t istri-
b ply
e ar
f
e for
s r ef-
f ee
S a
n -
t is
n
o f the
e am-
p y of

a non-zero catch is

pt = exp
(
β0 + αt +

∑
βixi,t

)
1 + exp

(
β0 + αt +

∑
βixi,t

) (9)

wherept is the probability of a non-zero catch during
yeart, β0 the intercept,βi the parameter for theith ex-
planatory variable, andxi,t the ith explanatory variable
for yeart.

A potential problem with Eq.(9) arises in that each
explanatory variable will have multiple levels (for cate-
gorical variables) and values (for continuous variables)
during yeart, making specification ofxi,t a requirement
for extracting the year effect. Common ways to over-
come this problem include setting continuous variables
to their means (or medians) over the year concerned (or
over the entire data set). For categorical variables, the
value used when applying Eq.(9) can be any value,
but is usually the most common value in the data set
(e.g.Punt et al., 2000a), or an average over all values
(weighted by the relative frequency of each value in the
data set). Alternatively, Eq.(9) can be applied setting
the values for the explanatory variables to their highest
and lowest values to determine the sensitivity of the
results to the choice of these values.

The precision of the year effect can be calculated an-
alytically (for some models) or using the delta method.
However, it is not straightforward to compute the pre-
cision of the index for delta models (see Section3.3).
V de-
t log-
n
j ghly
c eat
t

in
G on
a e of
o e the
v lue.
T vari-
a fects
( has
n imate
f nce
b ase
y

he use in tuna assessments for the eastern P
cean.
The year effect must be extracted from the mo

his is straightforward for models based on the
ransformed dependent variable and a normal d
ution error model, since the year effect is sim
xp(̂αt + σ̂2

t /2), whereα̂t is the estimate of the ye
actor for yeart andσ̂t the standard error ofαt. How-
ver, extracting the year effect is more complicated
ome of the other models. For example, the yea
ect for yeart from the delta-log-normal approach (s
ection3.3) is the prediction of the probability of
on-zero catch during yeart multiplied by the predic

ion of the catch rate for yeart, given that the catch
on-zero (Lo et al., 1992; Vignaux, 1994). The value
f the year effect depends on the values of some o
xplanatory variables for some error models. For ex
le, when applying a delta approach, the probabilit
ignaux (1994)used a bootstrapping approach to
ermine the precision of the year effect from a delta-
ormal model, whileRalston and Dick (2003)used a

ackknife method. Both of these methods can be hi
omputationally intensive, owing to the need to rep
he GLM analysis many times.

Categorical variables are over-parameterized
LMs if an intercept is estimated. The most comm
pproach to overcome this problem is to fix the valu
ne of the parameters (usually to zero) and estimat
alues for remaining parameters given the fixed va
he year effect is usually treated as a categorical
ble with the consequence that one of the year ef
that for the ‘base year’) is set to zero and hence
o associated variance estimate. The variance est

or a ‘non-base year’ therefore relates to the differe
etween the value of the year effect for the ‘non b
ear’ and that for ‘base year’.
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2.4. Summary of decisions

The previous three sections overviewed the basic es-
timation frameworks. However, use of these methods
to standardize catch and effort data necessitates mak-
ing several decisions (e.g. how to handle zero catches,
which explanatory variables to consider and which to
include in the final model, and diagnostic statistics).
The following sections deal with these issues.

3. Dealing with zero catches

Catch and effort databases often include high pro-
portions of records in which the catch is zero, even
though effort is recorded to be non-zero (records in
which effort is recorded to be zero must be either triv-
ial if they have zero catch as well, or in error and this
should be resolved in some way (e.g. discarded) prior to
any analyses being conducted). This is particularly the
case for less abundant species and for bycatch species.
Unfortunately, these species are often those for which
a standardized catch rate index is the most important
(or the only) source of data on the changes in abun-
dance (e.g.Ortiz and Arocha, 2004). The presence of
many zeros can invalidate the assumptions of the anal-
ysis and jeopardize the integrity of the inferences if not
properly modeled (Lambert, 1992). The zeros can also
lead to computational difficulties. For example, zero
catches cause computational problems for the standard
l of
z

( vul-

( ual
cre-

( s (in
ero
atch

(
( ain

the
, or
ies

It is desirable to attempt to account for the process
that caused the zeros when standardizing catch and ef-
fort data. For example, zero observations caused by
gear malfunctions can be detected in data by the catch
for all species being zero; such records should be dis-
carded prior to the analysis.

The simplest way to deal with zero observations
is to ignore them. This might be appropriate if zero
catches occur only because of gear failure or because
fishing occurred in circumstances under which it would
be impossible to catch the species of interest. Zero
catches can also be eliminated or reduced by com-
bining records from the same stratum (e.g. by aggre-
gating hauls within a day to daily records or daily
records into monthly records). However, this may not
be sufficient to eliminate all the zero catches. Fur-
thermore, grouping observations will result in a loss
of information, and may bias the analysis. For ex-
ample, if each record is associated with a different
value of some continuous explanatory variable, aggre-
gating data across records will necessitate some form
of averaging over this variable (or, worse still, ignoring
it).

The simplest alternative to ignoring zero catches or
aggregating data is to replace zero catches by a small
number, either by direct substitution or by adding a
small constant to each catch.Butterworth (1996)sug-
gests choosing this constant to give the most normal-
like distribution of residuals, usually by selecting for
zero skewness.Cooke and Lankester (1996)note that
a e se-
r lev-
e dard
o dded
t lues
w nd a
n )
s h a
c ions,
t ing a
s and
e mul-
t g the
a , i.e.
i
ε be
I g-
a

og-linear approach because the natural logarithm
ero is undefined.

Zero observations can arise for many reasons:

a) sampling a rare species or a species with low
nerability to the gear;

b) defining effort so that the capture of an individ
is a rare event (e.g. by defining each unit of re
ational effort to be a single hang);

c) sampling a species that schools or aggregate
this case, there may be a high probability of a z
catch, but, when a school is encountered, the c
rate may be very high);

d) malfunctions of the gear; and
e) recording zeros (fishers may record only the m

target species if many species are caught, if
reporting form has a limited number of entries
simply if they do not consider recording all spec
as being important).
dding a constant to each observation leads to th
ies of standardized catch rates depending on the
ls of the explanatory variables chosen as the stan
nes. They suggest that the constant should be a

o both the observed values and the predicted va
hen using a log-transformed dependent variable a
ormal error model. Alternatively,Butterworth (1996
uggests that if an analysis is conducted in whic
onstant is added to all of the catch rate observat
he abundance index should be based on select
tandard set of values for the explanatory variables
xponentiating the year effect plus the parameters
iplied by these standard values, and then removin
ssumed constant from the exponentiated value

f a model of the form ln(CPUEt,i + δ) = αt + βxi +
t,i is fitted to a set of data, the year factor should
t = exp(αt + βx̄t) − δ (which can, of course, be ne
tive).
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Adding a constant to each catch value may not nec-
essarily be the most appropriate way to model the data
because the results of a catch-effort standardization
may be sensitive to the value of the constant. Despite
the availability of objective methods for determining
the size of the constant (Berry, 1987; Porch and Scott,
1994), the value of the constant is usually chosen arbi-
trarily. Other simple methods, such as ignoring all zero
observations, may also have undesirable consequences
such as positively biasing the standardized catch rates,
but to a different extent each year. Fortunately, there are
more appropriate methods to deal with zero catches.
These methods fall into three categories: (a) statistical
distributions that allow for zero observations; (b) meth-
ods that inflate the expected numbers of zeros; and (c)
methods that predict the proportions of positive catches
and model the catch rate when the catch is non-zero sep-
arately (the delta approach). Zero-deflated distributions
are also possible, but seldom arise in practice (Ridout
et al., 1998).

Historically, ignoring zero observations or replacing
them by a constant was the most common approach.
Probability distributions that allow for zero observa-
tions have been used in some cases (NRC, 1994) but,
currently, the most popular way to deal with zeros
is through the delta approach (e.g.,Lo et al., 1992;
Vignaux, 1994; Ayers, 2003).

3.1. Models for count data

ivid-
u ap-
p ro
c t or
c form
b use
o iate
f e
i the
r s to
m t pa-
r

ata
i mes
t with
t ctual
c Pois-
s nt

et al., 2000a). In this case, it may be more appropriate
to model the data using the negative binomial distribu-
tion, which allows for a quadratic relationship between
the mean and the variance (i.e. var(Y) =µ+µ2/k, where
k is a parameter to be estimated; e.g.Punt et al., 2000a).

3.2. Zero-inflated models

The proportion of zeros in the Poisson and nega-
tive binomial distributions is related to the distribution
for the non-zero values (i.e. for a given distribution
of non-zero observations there is only a single pos-
sible proportion of zeros). However, if the processes
that lead to zero observations are not the same as those
that lead to non-zero catches (e.g. gear malfunction,
whether the species under consideration is being tar-
geted), zero-inflated distributions may be more appro-
priate (Lambert, 1992; Hall, 2000). These distributions
are a mixture of two distributions, a degenerate compo-
nent that is zero with certainty and a second component
that includes zeros and positive values (e.g., the Poisson
distribution). The general form of these distributions is

Pr(Y = y) =
{
w+ (1 − w)f (0), y = 0,

(1 − w)f (y) otherwise
(10)

wherew is the probability that an observation comes
from the degenerate component.

The parameters to be modeled as functions of the
explanatory variables are then the probability of a zero
o nd
d es
c lead-
i the
v y be
f
i ional
z ately.
T the
z tive
b

3

to
m the
c ately.
T odels
Catch data are often recorded as counts of ind
als, for which several statistical distributions are
ropriate. These distributions explicitly allow for ze
ounts and model integer values. Catch in weigh
atch rate can be converted into an appropriate
y rounding the data to the nearest integer, but the
f continuous distributions may be more appropr

or these types of data.Mullahy (1986)notes that th
nterest in modeling count data explicitly is due to
ecognition that the use of continuous distribution
odel integer outcomes might produce inconsisten

ameter estimates.
The standard distribution for modeling count d

s the Poisson distribution. This distribution assu
hat the encounter rate of individuals is constant,
he variance being equal to the mean. However, a
ount data are often overdispersed relative to the
on distribution (e.g.Bannerot and Austin, 1983; Pu
bservation,w, and (usually) the mean of the seco
istribution defined byf(y). In principle, the process
ausing the zero catches may be the same as those
ng to the distribution of positive values, so that
alues for the parameters of these two models ma
unctionally connected (Lambert, 1992). However, it
s more likely that the processes causing the addit
eros are different, and should be modeled separ
wo commonly used zero-inflated distributions are
ero-inflated Poisson (ZIP) and zero-inflated nega
inomial (ZINB).

.3. Delta approaches

An alternative to using zero-inflated models is
odel the probability of obtaining a zero catch and

atch rate, given that the catch is non-zero, separ
hese models have also been termed hurdle m
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(Cragg, 1971), because a hurdle must be overcome be-
fore a positive observation occurs. If the realization is
positive, the hurdle is crossed. The conditional model
of the positives is governed by a standard distribution
that is defined for positive values. For example, one mi-
nus the probability of a zero catch could be considered
to be the probability of encountering a school, while
the distribution of the positive values is the probability
distribution of the school size. The general form of the
delta model is

Pr(Y = y) =
{
w, y = 0,

(1 − w)f (y) otherwise
(11a)

Note that the two distributions, implied by Eqs.(10)
and (11a), are formally identical in that, if

w∗ = 1 − (1 − w)(1 − f (0)) and

f ∗(y) =
{

0, y = 0,
f (y)

1−f (0), y > 0
(11b)

then Eq.(10) reduces to Eq.(11a), with w replaced
by w∗ and f(y) replaced byf* (y). What are different
are the parameters to be modeled: in the latter,w is
the probability of a zero observation, whereas, in the
former, it is the probability of an ‘extra’ zero.
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4. Selecting explanatory variables

The main goal in standardizing catch and effort data
is to explain the variation in catch rate that is not a
consequence of changes in population size by identify-
ing explanatory variables that reduce the unexplained
variability in the response variable. Both qualitative
and quantitative variables can be included as explana-
tory variables in most methods. Qualitative variables
are treated as factors while quantitative variables can
be treated either as ordered values and used in func-
tions, or discretized and treated as factors. In principle,
the fraction of the variability explained can increase
substantially by including more and more explanatory
variables. However, adding explanatory variables will
generally reduce bias but increase the variance of the
index of abundance. This section outlines the steps
commonly followed to decide on which explanatory
variables should be included when standardizing catch
and effort data.

4.1. Choosing explanatory variables to consider

The first step is to determine which explanatory
variables are available and which of these should be
considered. Explanatory variables should, however, be
considered in an analysis only if there is an a pri-
ori reason that they may influence catchability. The
year effect should, of course, always be included in
the model, even if not statistically significant, because
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A binary random variable is zero for a zero o
ervation and unity otherwise, and has, by definit
Bernoulli distribution with probability paramet

. The probability of obtaining a zero observation
herefore usually modeled using the binomial dis
ution (e.g.Vignaux, 1994; Stef́ansson, 1996; Pu
t al., 2000a; Rodrı́guez-Maŕın et al., 2003). A vari-
ty of distributions could be used to model the ca
ate given that it is non-zero. The most commonly
ected distribution is the log-normal (Aitchison, 1955),
s inVignaux (1994)andPorter et al. (2003). The use
f this distribution has, however, been criticized fo

ack of robustness (Myers and Pepin, 1990; Syrja
000). Other distributions considered when apply

he delta approach are the gamma distribution (Cooke
nd Lankester, 1996; Punt et al., 2000a), the Poisso
istribution (e.g.Ortiz and Arocha, 2004), and the neg
tive binomial distribution (Punt et al., 2000a).
t is the quantity of interest. There are often m
xplanatory variables. For example,Horn (2003)con-
idered 23 possible explanatory variables when
ardizing the catch and effort data for ling (Genypteru
alcodes) off New Zealand. These variables includ

he type of trawl gear, the time of day when the tr
as used, the vessel call sign, the characteristic

he vessel (length, breadth, etc.), and an environm
actor (the southern oscillation index). Other variab
onsidered routinely when standardizing catch an
ort data include area, month, and the catch (or c
ate) of species other than those under considera
ncluding the catches (or catch rates) of other spe
e.g. Punt et al., 2001a) is meant to be a way of in
luding the impact of fishers targeting species o
han that under consideration in multi-species fishe
owever, if the other species are closely relate

he species of interest and are being fished dow
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the same time, the inclusion of these other species
as explanatory variables may remove time trends in
catch rate which should be attributed to the year ef-
fect.

In some cases, the decision about which variables
to include may be quite subtle. For example, should
each vessel be included as a categorical variable (e.g.
Punt et al., 2000a; Battaile and Quinn, 2004) or
should the characteristics that define a vessel be in-
cluded as explanatory variables (e.g.Vignaux, 1996).
This choice depends on how the vessel is thought to
influence catch rate and what information is avail-
able. For example, if the captain is thought to be
the main influence on catchability through differ-
ences in skill and targeting practices, then a ves-
sel effect may be more appropriate (Punt et al.,
2000a).

Inclusion of explanatory variables that are them-
selves correlated, the so-called problem of ‘collinear-
ity’, should be avoided. This can make the model
fitting process numerically unstable or lead to prob-
lems similar to those of over-fitting. For example, the
length of a vessel is almost invariably highly corre-
lated with its breadth, and including both of these
quantities as explanatory variables will not contribute
very much more to the predictive ability of the model
than just one of them, or some simple function of the
two. One way to avoid the problem of using corre-
lated explanatory variables in an analysis is to ex-
amine the explanatory variables prior to conducting
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4.2. Model selection

There are two general categories of methods to
determine which explanatory variables should be in-
cluded in an analysis: (a) methods based on the fit to
the data that include a penalty based on the number of
parameters estimated; and (b) methods that compare
model predictions to observations. The difference be-
tween these methods is that the first category uses all
of the data set to estimate the model parameters, while
the second group generally uses only part of the data
set to estimate the parameters and the remaining part
to test predictions.

Standard hypothesis testing methods (e.g.F-tests,
likelihood ratio tests, and score tests) can be used
to compare a more complicated model (i.e. more pa-
rameters) to less complicated models (McCullagh and
Nelder, 1989; Hilborn and Mangel, 1997). These meth-
ods can be automated to select the ‘best’ model. How-
ever, they can be applied straightforwardly only to
nested models. In contrast, information-theoretic meth-
ods, such as the Akaike information criterion (AIC;
Akaike, 1973; Burnham and Anderson, 2002) and the
Bayesian information criterion (BIC;Schwarz, 1978),
are methods that can also be applied to non-nested mod-
els:

AIC = −2 ln �+ 2p,

BIC = −2 ln �+ p ln(n)
(12)
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ory variables that are not highly correlated. Ho
ver, the presence of collinearity is less of a prob

f the goal of the analysis is to generate an in
f relative abundance for use in a stock assess
odel rather than to determine the variables tha
lain variation in CPUE. This is because additio
ariables that are correlated tend not to add much
lanatory power beyond the first variable selected

hat they are rejected in a stepwise selection pr
ure.

If catch is used as the dependent variable ra
han catch rate, the measure of effort should be
luded in the analysis as an explanatory variabl
s an offset. In fact, multiple effort measures can

ncluded as explanatory variables, thereby allow
he data to choose the most appropriate measu
ffort.
here� is the likelihood function evaluated at its ma
mum,p the number of parameters, andn the numbe
f observations.

As the number of data points increases, it beco
ore difficult to accept additional parameters unde
IC than under the AIC. For categorical variables,
ossible to test a single level in a categorical vari
one parameter) or the categorical variable as a w
the number of parameters is equal to the numb
evels in the categorical variable minus 1).

One ‘problem’ with both standard hypothesis t
ng methods and information-theoretic approache
hat most sets of catch and effort data consist of t
ands (or tens of thousands) of points. One co
uence of this is that AIC or BIC may identify a mo
ith an enormous number of explanatory variable
ommonly-applied (but ad hoc) way to deal with t
e.g.Horn, 2003) is to add explanatory variables on
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Fig. 2. Diagnostic plots for the goodness-of-fit of a log-linear model to the catch and effort data for the blue grenadier (M. novaezelandiae)
off the west coast of Tasmania, Australia. The dotted line in the upper left panel is the geometric mean catch rate, and the solid line is the
standardized catch rate index.

if the deviance is reduced (orR2 is increased) by a pre-
specified percentage (e.g. 0.5 or 2%).

Standard regression diagnostic statistics (e.g.Fig. 2)
should also be examined to attempt to identify model
misspecification and heteroscedascity (McCullagh and
Nelder, 1989; Ortiz and Arocha, 2004). Fig. 2 shows
a variety of diagnostics, including standardized resid-
uals versus the fitted values (to assess whether model
misspecification is occurring), the square root of the ab-
solute values of the standardized residuals versus the
fitted values (to assess whether the variance changes
as a function of the predicted value—it should not in
this case), the observed versus the predicted values (to
assess qualitatively whether the explanatory variables
are indeed able to reduce the variance in the data), and
quantile–quantile plots.Fig. 2shows only a small sub-
set of the possible diagnostic statistics. Other statistics,

such as those to identify outliers, should also be exam-
ined routinely when analyzing catch and effort data.

Cross-validation is also a commonly used method to
select explanatory variables (Hastie et al., 2001). This
involves using a ‘training data set’ (a subset of the total
data set) to estimate the parameters of the model and
using the resulting model to predict the remaining data
(the ‘test data set’). The ability of the model to predict
the test data set is used to select the explanatory vari-
ables to include in the model. If too many explanatory
variables are selected, the model fits the training data
set very well, but is fitting noise rather than signal, and
therefore cannot predict the test data set well. If too
few explanatory variables are used, the model does not
adequately mimic the data, and fits both the test and
training data sets poorly. There are several versions of
cross-validation, but a popular one that makes more use
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of the data than simple cross-validation, isk-fold val-
idation (Hastie et al., 2001). The data are divided into
k equal parts and the model is runk times, each time
rotating through each of thek subsets as the test data
set and using the remaining data as the training data
set.

One problem with cross-validation is that it does
not necessarily parallel the likelihood inference that is
often used to estimate the model parameters. This is
because a test criterion is required, and simple least
squares are often used (Hastie et al., 2001). How-
ever, the likelihood function may differ from the least-
squares criterion.

4.3. Error structure assumptions

Often, relatively little attention is paid to determin-
ing whether the distributional assumptions are actually
valid (e.g. the residuals from a log-linear regression are
normally distributed). Selection among statistical mod-
els can be carried out by examining the relationship be-
tween the average catch rate and the variance in catch
rate (Dong and Resterpo, 1996; Punt et al., 2000a) but
note thatDick (2004)finds this a weak method for se-
lecting among statistical models. A linear relationship
supports an overdispersed Poisson error model, and
variance in catch rate proportional to the square of the
average catch rate suggests the log-normal and gamma
error models. The negative binomial error model im-
plies that the variance in catch rate is a function of both
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Standard regression diagnostics often identify po-
tential outliers. However, it is our experience that the
presence of a small number of outliers will not affect
the trends in catch rate substantially, primarily because
catch-effort data sets are commonly so large that a few
points can have only a limited impact on the final out-
comes. In cases where outliers are considered prob-
lematic, robust regression can be used to reduce the
influence of the outliers (Rousseeuw and Leroy, 1987).

5. Dealing with interactions

Interactions among factors occur fairly regularly
when standardizing catch and effort data. The most
common interactions are among year, month/week/day
and area. Discovering significant (and substantial) in-
teraction terms can raise some interesting hypotheses.
For example, discovering a year× vessel interaction
implies that the relative abundance has changed dif-
ferently as seen by different fishers. However, explain-
ing interactions can be difficult, and there is often no
rational explanation for some interactions. A year×
vessel interaction can be caused by several factors: dif-
ferent vessels targeting different size classes of fish or
fishing in different areas, and some fishers having up-
graded their equipment and others not having done so.
In the latter case, it may be possible to eliminate the in-
teraction by including additional explanatory variables
(such as the equipment used on a vessel; seeRobins et
al. (1998), Bishop et al. (2000)andRodŕıguez-Maŕın
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he average catch rate and the square of the av
atch rate. The choice of the error model is often de
ent on the data points at high catch rates, which ma

ew in number (e.g.Punt et al., 2000a). In addition, the
atch rates often have downward trends over time
his trend may inflate the variance in catch rates (Punt
t al., 2000a). Methods such as quantile–quantile p
Fig. 2) can also be used following the application
model to determine whether the residuals are co

ent with the assumed error model.Dick (2004)shows
hat AIC can be used to select among error struc
ssumptions.

It is possible to allow the variance of the resi
ls to depend on explanatory variables. For exam
utterworth (1996)modeled the variance of the res
als about a log-linear regression as (α + β/E)2, where

he values forα andβ were obtained using iterati
e-weighting.
t al. (2003)for examples of catch-effort standardi
ions that included factors for skipper experience
he use of aids such as the Global Positioning Sy
nd plotters).

Identifying significant interactions with year mea
hat it is no longer straightforward to use the year fa
s the basis to develop an index of abundance. T
re a variety of approaches for dealing with interact
hen constructing an index of abundance. The firs
roach is to explicitly ignore any interactions betw
ear and other explanatory variables (e.g.Vignaux,
994). This approach avoids consideration of the p

em, but may lead to a biased index of abundan
ubstantial interactions with year are present.

If an interaction between year and a factor (
onth) is found, an appropriate way to develop the
ex of abundance (considering here the simplest
f a log-linear regression approach) is to average
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year× month interaction terms over the year:

It =
∑
m

zmIt,m (13)

where It is the relative abundance index for yeart,
It,m the index of abundance for yeart and monthm
(calculated from the relevant year× month interaction
term), andzm the weighting factor for monthm (where∑

mzm = 1).
An appropriate choice forzm could be 1/12 if the

fishery occurred over the entire year (D.S. Butterworth,
pers. commun.).

Dealing with year× area interactions is not as
straightforward as dealing with year× month inter-
actions because it is difficult to define the ‘area’ which
would be needed to apply Eq.(13). One way to do this
is to define a ‘habitat area’ for each area included in
the analysis and use that in the weighting scheme (e.g.
Quinn et al., 1982; Punt et al., 2001b; Campbell, 2004).
Punt et al. (2001b)weighed the year× area interactions
by the physical area between 20 and 80 m depth of each
area in the analysis when standardizing catch and ef-
fort data for gummy shark (Mustelus antarcticus) off
southern Australia.

Another approach to dealing with year× area in-
teractions is to recognize that these interactions im-
ply different trends in abundance in different areas,
which, in turn, implies some form of spatial structur-
ing of the population.Punt et al. (2000a)standardized
the catch and effort data for the school shark (Gale-
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and area. However, this is seldom the case (e.g., if the
fishery developed in one area and expanded spatially
thereafter). The solution to this problem (Campbell,
1998, 2004; Punt et al., 2000a; Walters, 2003) is to de-
velop algorithms for specifying the missing year× area
interactions. The algorithms should use information for
the year× area combinations with data to interpolate
(and perhaps extrapolate) to the remaining combina-
tions. Unfortunately, the resulting index of abundance
(and hence the results of any subsequent stock assess-
ment) may be highly sensitive to the algorithm chosen
for interpolation and extrapolation (Campbell, 1998;
Butterworth et al., 2003).

6. Selecting data points

The bulk of the world’s marine fish species are
caught in fisheries that involve multiple target species.
This is particularly true for species caught in trawl
fisheries and those caught recreationally. Given the re-
quirement to standardize the catch and effort data for
a species that is caught in a multi-species fishery, it
seems desirable to use only the effort that was directed
at that species. Unfortunately, this is much easier said
than done, even when fishers claim to record their target
species in logbooks. In many cases, the fisher may just
record the most prevalent species as the target species.

The most common way to deal with this problem is
to base the catch-effort standardization on the records
for those fishers who appear to target the species un-
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rhinus galeus) off southern Australia, and noted d
erent trends in standardized catch rate in diffe
reas (Fig. 3). Rather than attempting to pool the
ices across areas in some way,Punt et al. (2000b
ssessed this population using a population dyn

cs model that was spatially structured. Develop
patially-structured population dynamics models is
ossible in all cases because these models rely o

ormation, say, on movement.
If a year× area interaction is assumed to have ar

ecause of the random changes in the distributio
he population (unlike those inFig. 3), it is possible to
ssume that the year× area interactions are rando
ffects and use a generalized linear mixed mod
tandardize the data (e.g.,Chang, 2003; Miyabe an
akeuchi, 2003).

The use of Eq.(13)implies that year× area interac
ion factors are available for all combinations of y
er consideration. Fishers can be chosen using cr
elected by experts (e.g., assessment scientists an
rs). These criteria can include a minimum numbe
ears in the fishery, a minimum number of reco
nd a minimum average (or median/total) catch.
xample,Taylor (2003)standardized the catch and
ort data for orange roughy (Hoplostethus atlanticus)
ased on data for vessels that had 20 or more po
atches in at least 4 years, whilePunt et al. (2001b
ased their standardization of the catch and effort

or gummy shark on vessels that satisfied four c
ia (in the fishery for at least 5 years, a median an
atch (all sharks) of at least 10 metric tons (t), a me
nnual catch (gummy shark) of 5 t, and gummy sh
onstituting more than 60% of the total shark cat
oth Punt et al. (2001b)andTaylor (2003)examined

he sensitivity of their results to the choice of crite
or selecting vessels.
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Fig. 3. Standardized catch rate indices for school shark in four regions off southern Australia.

An alternative method to overcome the problem
of defining target effort is to define the characteris-
tics of target effort. These characteristics could include
the depth or area fished, or the other species caught.
For example,Stephens and MacCall (2004)used this
method to develop a catch rate index for bocaccio rock-
fish (Sebastes paucispinis) from data for recreational
party boat fishing trips off California. These data do
not contain information on where fishing occurred. Fur-
thermore, this recreational fishery is directed at a wide
range of species, including some, such as pelagic tunas,
that occur where it would be impossible to catch bocac-
cio rockfish.Stephens and MacCall (2004)developed
a method that associate the presence of bocaccio rock-
fish in the catch of a trip with the other species caught
during the trip and use this to select which trips to use
in a catch-effort standardization.

The preceding discussion has focused on exclud-
ing records that are likely to have been directed at
species other than that under consideration. Catch-
effort records should also be rejected for use in an anal-

ysis if they contain obvious errors. Typical errors in-
clude: (a) missing values (e.g. on location, catch, etc.),
(b) very long (or short) tow duration (or large num-
ber of sets), (c) unrealistically long nets, and (d) unre-
alistically high catches or catch rates. Although most
catch-effort data sets are sufficiently large that the oc-
casional outliers should not affect the final estimates, it
is necessary that the analyst check the data for obvious
errors and remove them. If a large number of records
are rejected because they are missing data for a single
explanatory variable, it may be better to retain the data
and ignore the explanatory variable, particularly if it
explains only a small proportion of the total variability.

7. Using indices of abundance in stock
assessment models

The primary reason for standardizing catch and ef-
fort data is to develop an index of relative abundance.
This can be used as the basis for management advice
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directly, but is typically used when fitting a stock as-
sessment model. To use an index of relative abundance
estimated from catch and effort data in a stock assess-
ment, the index of abundance must first be extracted
from the standardization analysis (see Section2.3) and
then an appropriate fitting method, usually a likelihood
function, must be selected.

There are two approaches to include an index of
relative abundance in a stock assessment:

(a) the index can be assumed to be proportional to
abundance (e.g.Butterworth and Andrew, 1984;
Maunder and Starr, 2003) and the difference be-
tween the observed and model-predicted indices
attributed to observation error; or

(b) the index can be used to derive ‘standardized ef-
fort’ (essentially by dividing the catch by the index)
and the ‘standardized effort’ included as a model
input to predict the annual catch (e.g.Schnute,
1977; Fournier and Archibald, 1982; Deriso et
al., 1985; Fournier et al., 1998; Dichmont et al.,
2003).

The first is used far more frequently than the second.
Specifically, most age- and size-based approaches to
fisheries stock assessment (e.g.Methot, 1993, 2000;
Punt and Kennedy, 1997; Hilborn et al., 2000) treat
the indices of relative abundance this way. The most
common assumption about observation error is that it
i
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The likelihood function for the index of abundance2

is therefore:

L(I- |θ-) =
∏

t
L(It|θ-) =

∏
t

1√
2πσtIt

× exp

(
[ln It − ln(qNt)]2

2σ2
t

)
(15)

whereθ- is the vector of the parameters of the stock
assessment model.

There are several ways to specify the observation
error standard deviations:

(a) assume thatσt is independent of time, i.e.,σt = σ

(e.g.Butterworth and Andrew, 1984);
(b) assume thatσt is the product of a year-specific stan-

dard deviation,wt , and an overall variance scaling
parameter,σ, i.e.,σt = wtσ (e.g.Cope et al., 2003;
Maunder and Starr, 2003); and

(c) assume thatσ2
t is the sum of a year-specific vari-

ance,w2
t , and an additional variance term,σ2, i.e.,

σt =
√
w2
t + σ2 (e.g.Francis et al., 2003; Punt and

Butterworth, 2003).

The parameterσ is either pre-specified based on a
priori considerations (e.g.Francis et al., 2002) or is
treated as a parameter of the model to be estimated.
The values ofwt need to be pre-specified based, say, on
the results of the catch-effort standardization (but see
Francis, 1999; Maunder and Starr, 2003for the correct
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t = qNt exp(εt), εt ∼ N(0, σ2
t ) (14)

hereq is the catchability coefficient,Nt the mode
stimate of the abundance during yeart, andσt the
tandard deviation of the observation error for y
.

The definition of the abundance to which the in
elates is the key to an appropriate use of a standar
atch rate index in a stock assessment. This is be
ifferent components of the population may exhibit

erent trends over time. Abundance can be define
erms of biomass or numbers, depending on whe
atch is measured in numbers or in weight, and
bundance is usually population numbers (or biom
odified by the age- or size-specific selectivity of
ear used in the fishery.
nterpretation ofσ2
t from a GLM standardization). I

eneral, the variability about the year factors is con
rably less than that between the index of abund
nd the model predictions (e.g.Cope et al., 2003), so

hat the value ofσ is usually much greater than un
hen using method (b) and much greater thanwt when
sing method (c). The reasons for this include
atchability may vary among years (so all the ca
ates for a year may be affected by the same fa
nd that the standardization may have ignored a

actor.Francis et al. (2003)analyzed a large number

2 In this case, theIt in the denominator of the first term is t
acobian from the transformation of variables (Casella and Berge
990, p. 50, Theorem 2.1.2). This term is often omitted from

og-normal likelihood function presented in the fisheries litera
e.g.,Hilborn and Mangel, 1997, p. 248;Maunder and Starr, 2003).
owever, becauseIt is a constant, its inclusion or otherwise has
ffect on the estimates of the parameters of the model.
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CPUE and research survey data sets and found that the
coefficient of variation for the combined effects of ob-
servation error and annual variation in catchability was
∼0.15–0.2. Although not commonly done, Eq.(15)can
be extended to allow for the correlation among the year
factors that results from all the outputs being from the
same model (Myers and Cadigan, 1995; Cooke and
Lankester, 1996; Francis, 1999).

Methods (b) and (c) should not be used if the year-
specific weights,w2

t , are based on the standard errors
of the year effects, and the year effect for the base year
is set equal to zero (and so has no variance) (Maunder
and Starr, 2003). A simple way to avoid this problem
is apply method (b), wherewt is some function of the
sample size for yeart. Francis (1999)suggests a more
elegant solution to this problem by dividing the annual
indices by the geometric mean index over all years,

I0
y = Iy

(∏
y′Iy′

)1/n
, wheren is the number of years

for which indices are available. The main advantage
of this ‘canonical’ form is that the standard error for
each year can be calculated, and is independent of the
year that is chosen as the base year (R.I.C.C. Francis,
NIWA, pers. commun.).

The value ofσ2
t determines, in addition to the level

of uncertainty, the amount of information provided by
the CPUE index relative to any other sets of data when
there is more than one source of information in a stock
assessment. Therefore, in some cases, it may be ap-
propriate to fixσ at a level that reflects the quality
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that included the true value more often than the two-
step approach of first standardizing the catch and effort
data and then including its results in an assessment
model. One advantage of integrating the catch-effort
standardization with the fitting of the stock assess-
ment model is that the uncertainty associated with the
catch-effort standardization, including temporal corre-
lation, is automatically accounted for, when the uncer-
tainty associated with any model outputs is computed.
Unfortunately, integrating the catch-effort standardiza-
tion with the stock assessment can be very computa-
tionally demanding. This has restricted its application
to date.

8. Discussion

Standardization of catch and effort data to develop
an index of the relative abundance of a fish population
assumes that the explanatory variables available are
sufficient to remove (or explain) most of the variation in
the data that is not attributable to changes in abundance.
However, even if catch and effort data are standard-
ized to remove the impact of all known factors, there is
still no guarantee that the resultant index of abundance
is linearly proportional to abundance (as is assumed
in Eqs.(14) and (15)). Cooke and Beddington (1984)
andCooke (1985)described various scenarios in which
catch rate is unlikely to be linearly related to abundance.
Cooke and Beddington (1984)highlighted the possibil-
ity that catch rates may decline more slowly than abun-
dance (‘hyperstability’). Based on a meta-analysis of
297 CPUE data series, and extending the work ofDunn
et al. (2000), Harley et al. (2001)found strong evi-
dence that CPUE was hyperstable (i.e. CPUE remains
high while abundance declines). However, the opposite
problem (‘hyperdepletion’) can also occur (e.g.,Prince
and Hilborn, 1998).

The goal of the standardization is to remove most
of the annual variation in the data not attributable to
changes in abundance. However, the fraction of the
overall variation in the data explained by a catch-effort
standardization can be disappointingly low. For ex-
ample, when standardizing catch and effort data for
orange roughy east of New Zealand using the delta-log-
normal approach,Anderson (2003)was able to explain
only 14.5% of the deviance associated with the non-
zero catches and 7.5% of the deviance associated with
f the data or the validity of the assumptions un
ying its use (e.g. standardized CPUE is proportio
o abundance). This is particularly important whe
PUE index is available for many years, and an in
f abundance from survey data is only available f

ew years. The greater number of data points for
PUE index can drive the analysis even ifσ is fixed at
relatively high level.
In principle, the stock assessment and the ca

ffort standardization can be conducted simultaneo
e.g., Maunder, 2001; Maunder and Langley, 200).
n such an ‘integrated analysis’, the parameters o
opulation dynamics model and those related to ca
ffort standardization are estimated simultaneous
ptimizing an objective function for all sources of d
vailable to the stock assessment model (e.g. catc
ge data).Maunder (2001)showed that this integrate
nalysis produced much narrower confidence inte
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whether a catch is positive, even though information
was available on 12 (potential) explanatory variables.
Not surprisingly, the standardized index of abundance
was almost identical to the annual geometric means
of the catch rates. However, there is an interaction be-
tween the level of variation explained and the level of
data aggregation (Paul Starr, pers. commun.). When
the data are highly disaggregated (e.g. ‘tow-by-tow’
data), the explanatory power is generally low and can
be ‘increased’ by aggregating the data. It may there-
fore not be appropriate to compare the level of varia-
tion explained among different analyses, and analysts
should not base their perceptions about the reliability of
their index of abundance on the extent of the variation
explained.

This review has focused on the methods used most
frequently to standardize catch and effort data, specifi-
cally those that can be implemented using such popular
statistics packages as SPlus and SAS. However, this is
a rapidly developing field. For example,Bishop et al.
(2000)used generalized estimating equations (GEEs;
Liang and Zeger, 1986; Zeger and Liang, 1986) to
standardize catch and effort data,Maunder and Harley
(2003)used neural networks andWatters and Deriso
(2000)used regression trees. The latter two approaches
allow for non-linear relationships between the response
variable and the explanatory variables, and hence allow
the data to identify the relationship(s) between catch
rate and the explanatory variables.

Hinton and Nakano (1996)used a priori expecta-
t sh-
i rdize
c
i er-
e data
f ref-
e ives
m ap-
p from
t
a
s ex of
a pula-
t the
s lines,
b data
c
e

Although many methods are now available to stan-
dardize catch and effort data, little effort has been
directed toward identifying the most appropriate meth-
ods for specific instances. Some simulation work (e.g.
Porch and Scott, 1994; Maunder, 2001; Campbell,
2004) has been undertaken, but additional work along
these lines is clearly a high priority for the future.

Finally, although this paper has focused on standard-
ization of fishery-dependent data, there is no reason
that the methods outlined above could not be applied
to fishery-independent data. For example, some of
the methods described above are used to standardize
fishery-independent dive survey density estimates for
paua (Halitiotis iris) in New Zealand for the effects of
diver and time of the year (e.g.Breen and Kim, 2003),
while Cope et al. (2003)standardized the indices of ju-
venile abundance from power plant impingement rates
for the effects of power station and season.
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