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Abstract

The primary indices of abundance for many of the world’s most valuable species (e.g. tunas) and vulnerable species (e.g.
sharks) are based on catch and effort data collected from commercial and recreational fishers. These indices can, however, be
misleading because changes over time in catch rates can occur because of factors other than changes in abundance. Catch-effo
standardization is used to attempt to remove the impact of these factors. This paper reviews the current state of the art in the
methods for standardizing catch and effort data. It outlines the major estimation approaches being applied, the methods for
dealing with zero observations, how to identify and select appropriate explanatory variables, and how standardized catch rate
data can be used when conducting stock assessments.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction used when fitting stock assessment models. However,

the data generally must include information on at least

Scientific advice on fisheries management is gener- the removals due to harvesting and an index of relative

ally based on the results of the application of some form abundance. Although the index of abundance should,
of stock assessment technigudilborn and Walters, ideally, be based on fishery-independent data collection
1992. Stock assessment usually involves estimating methods such as surveys, fishery-independent data are
the parameters of some form of population dynamics often extremely costly or difficult to collect, in which
model by fitting it to research and monitoring data and case it must be based on fishery-dependent data. There-
using the results of the fitting process to estimate quan- fore, assessments of many stocks (e.g. sharks and tu-
tities (such as the current abundance) that are of interestnas) are based solely on fishery-dependent data. The
to the decision makers. A variety of data types can be most common (and easily collected) source of fishery-

dependent data is catch and effort information from
T A . _ _ commercial or recreational fishers, usually summa-
fax: flogggzgd;q%? thor. Tel.: +1. 858 546 7027; rized in the form of catch-per-unit-of-effort (CPUE)

E-mail addressmmaunder@iattc.org (M.N. Maunder). or catch rate.

0165-7836/$ — see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.fishres.2004.08.002



142 M.N. Maunder, A.E. Punt/ Fisheries Research 70 (2004) 141-159

o - o

) Fisher 1 — o

Fisher2 oo

o o
% qle—e—e—e—e—e—e—0o—e0o—o¢ % b
v v .\O\.\.
S S 1 —e— o,
[ < —e—g
o Cle 0 0 0 0 0 .. 0. .00 o e

o o

© T T T T T O T T T T T

2 4 6 8 10 2 4 6 8 10
Year Year

Fig. 1. Catch rate time series for two hypothetical fishers and the trend in raw catch rate (total catch divided by total effort) if the effort expended
by fisher 1 decreases from 80% of the total to 20% over years 1-10.

The use of catch rate as an index of abundance as-there is actually no change in the true abundance of the
sumes that, at small spatial scales, catch is proportionalresource.

to the product of fishing effort and density: The ability to use catch rate data as an index of abun-
dance therefore depends on being able to adjust for
C=gqEN 1) (i.e. remove) the impact on catch rates of changes over

time of factors other than abundance. This process is

. . often referred to as ‘catch-effort standardization’. The

andq the fraction of the abundance that is captured by dangers associated with basing stock assessments on

one unit of effort (often referred to as the catchability ‘raw’ catch rates have been known for many years, and

coefficient). , various methods for standardizing catch and effort data
Re-arranging Eq(1) leads to the fundamental rela- have been developed (e@ulland, 1956; Beverton and

wherekE is the fishing effort expended the density,

tionship between catch rate and density: Holt, 1957; Robson, 1966; Honma, 1978ll of which
C define the efficiency of a fishing vessel as its ‘fishing
7 =aN (2) power’ relative to that of a standard (and perhaps even

hypothetical) fishing vessel. The most commonly ap-
Eq. (2) can be generalized from a small patch fished plied method prior to the use of generalized linear mod-
by a single fisher to the entire population fished by eling approaches was that developed3®yerton and
a large fishing fleet (in which cade is the popula-  Holt (1957) This method involves selecting a ‘stan-

tion size rather than density) as longepis a constant  dard vessel’ and determining the relative fishing power
(independent of time, space, and fishing vessel). How- of all other vessels by

ever,g may not be constant, but may change spatially Ci/E;
and temporally due to changes in the composition of RFP = ——
the fishing fleet, where fishing occurs, and when fish- Cs/Es
ing occurs (e.gCooke and Beddington, 1984; Cooke, where RFPis the relative fishing power for vesseC;
1985; Hilborn and Walters, 1992As an example, con-  the total catch by vesselduring the period in which
sider the case in which there are two fishers, and abun-both the standard vessel and vessedre in the fishery,
dance is constant over time, with the result that the Cs the total catch by the standard vessel during the
catch rate for each of the fishers is constant over time period in which both the standard vessel and veissel
(Fig. 1, left panel). If the catch rate for fisher 1 is twice were in the fisheryg; the total days fished (or whatever
that for fisher 2 and the fraction the total effort ex- measure of fishing effort is chosen) by vessaliring
pended by fisher 1 decreases from 80% of the total the period in which both the standard vessel and vessel
effort in year 1 to 20% in year 10, there is a marked i were in the fishery, anéts the total days fished by
decline in the ‘raw’ catch rate (total catch divided by the standard vessel during the period in which both the
total effort) over timeFig. 1, right panel), even though  standard vessel and vesselere in the fishery.

©)
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The standardized catch rate for yealt;, is then 2. Basic methods

defined as
2.1. Generalized linear models
I = ZiCtvi (4) . .
= —Zi(RFR ) Generalized linear models (GLMSglder and Wed-

derburn, 197pare the most common method for stan-

dardizing catch and effort dat@avaris (1980appears
whereC;; is the catch by vesseln yeart, andE;; the to have been the first to have used a GLM approach
number of days fished by vesseh yeart. to standardizing catch and effort data when he ex-

Although straightforward to apply, the approach of  tended the use of multiplicative models for this purpose

Beverton and Holt (195701085 not generalize eaS”y (Robson’ 1965by exp“Citiy assuming |Og-norma| er-
to deal with multiple factors such as month and area, rors. Gavaris (1980)pplied an analysis of variance
and when there is no fishing vessel that has been in the(ANOVA) model (only categorical explanatory vari-
fishery for many years and can be used as the standarchples) to the natural logarithm of CPUE, assuming
vessel. Fina”y, itis not Straightforward to determine the Gaussian error with a constant variance (equivaient to
preCiSion of the standardized catch rate eStimateS; thiS|east-squares estimation) and independence among the
information is, however, needed when applying many opservationkimura (1981 extended this approach by

of the methods of stock assessment. including both categorical and continuous explanatory
More recent methods for standardizing catch and ygriables.

effort data involve fitting statistical models to the catch GLMs are defined by the statistical distribution for

and effort data. The first examples of these methods the response variable (usually, but not always, catch
were byGavaris (1980andKimura (1981) However,  rate) and how some linear combination of a set of ex-

the last two decades have seen a proliferation of new pjanatory variables relate to the expected value of the
methods to standardize catch and effort data, most of response variable. The key assumption of a GLM is

which extend these methods to some extent. The choicetherefore that the relationship between some function
among these methods should be based on an evaluatiomf the expected value of the response variable and the
of the underlying assumptions of the models and use explanatory variables is linear:

of appropriate statistical tests and diagnostics. Under- -

standing of the fishery being modeled may also provide &(ii) = X; B (5)
insight into which method should be used. For exam- \yhereg is the differentiable and monotonic link func-
ple, many fishery systems are inherently nonlinear, and tion, 11 = E(Y;), x; the vector of sizenthat specifies the
methods that can handle nonlinear relationships be- explanatory variables for thiéh value of the response

tween catch rate and potential variables that capture 5 igplel B is a vector (of sizem) of the parameters
changes over time and space in catchability may be andY; theith random variable.

more .appropriate'. GLMs are a very general and powerful statistical
This paper reviews many (but, by no means, all) of technique that include, as special cases, Gaussian lin-
the decisions that must be made when standardizing g5y models (ANOVA, regression), log-linear models for

catch and effort data. The following sections highlight - fraquency data, logistic regression models, and several
various issues related to the choice of the model on gihers. In order to apply a GLM, it is necessary to:

which to base the analyses and the data set to be conya) choose the response variable, (b) select a sampling
sidered, focusing, in particular, on model selection and gjstripution for the response variable from the expo-
how to deal with re_cords for which the effort is non-  antial family (e.g. normal, exponential, Poisson, bi-
zero, but the catch is zero. o ~ nomial, gamma), (c) chose a link function appropriate
Most of the catch-effort standardizations on which 4 the distribution, and (d) select a set of explanatory
actual assessments are based are documented in thgariables. Year must be one of the explanatory vari-
gray literature. We have attempted in this review, as gpjes because the primary objective of standardizing
much as possible, to restrict the examples to cases in
which the basic documents are fairly readily available. 1 |nciudes the intercept by setting = 1 for alli.
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catch and effort data is to detect trends over time in year on the catch rate of gemfidRexea solandyioff
abundance. This cannot be achieved unless year is in-New Zealand, using a third-order polynomial, whereas
cluded in the model (regardless of whether or not itis Puntetal. (2001apodeled the impact of week on catch
statistically significant). rates of blue grenadieMacruronus novaezelandipe

The choice of a statistical distribution for the re- off southern Australia, treating each week of the year
sponse variable (often also referred to as the ‘error as a categorical explanatory variable.
model’) should take account of the nature ofthe process  There are several reasons that GLMs remain the
that generated the data being modeled. For example, anost commonly applied method for standardizing
discrete distribution, such as the Poisson or the nega-catch and effort data. These include the availability of
tive binomial, may be the most appropriate distribution well-tested and user-friendly software to perform the
if the catch is recorded in individuals. In this case, the calculations. Also, some special cases of the GLM ap-
catch, rather than the catch rate, should be the responsgroach (e.g., multiple linear regression) have a long
variable, and the fishing effort should be included as history in quantitative fisheries science.
an offset (i.e. effort is added to the outcome from the
linear predictor in Eq(5)) or perhaps as an explana- 2.2. GAMs and GLMMs
tory variable. However, a continuous distribution may
be more appropriate if the catch is in weight, catch rate  Although the great majority of the catch-effort stan-
is modeled, or a large number of individuals are usu- dardizations have been (and still is) based on the ap-
ally caught by each unit of effort (e.g. if many units of plication of the GLM approach, two other estimation
effort are combined into a single datum). frameworks have also been applied.

Natural (canonical) link functions exist for each of Generalized additive models (GAMdastie et al.,
the distributions in the exponential family. For exam- 2001) are extensions of generalized linear models that
ple, the default link function for the normal distribution involve generalizing EQ5) by replacing the linear pre-
is the identity function, while that for the binomial dis-  dictor by an additive predictor:
tribution is the logit function:

p
; g(ui) = p+ ) filx) (8)
In (1 e ) =x/B (6) /gl
— MK :
wherefj is a smooth function (such as a spline or aloess

Nonlinearity in the relationship between the dependent
and explanatory variables can be included in GLMs
through the link function, through interaction terms,

and by transforming the explanatory variables. For ex-
ample, nonlinearity can be taken into account by in-
cluding explanatory variables raised to various powers:

smoother).

The degree of smoothness achieved is balanced
against the deviance by a tuning constant, often cho-
sen by cross-validation, so that estimation is by the
method of maximunpenalizedikelihood rather than
of maximum likelihood. This gives GAMs a partially
g(ii) = Bo + Brxi1 + ,32xiz.1 + ,33X,~31 NI 7) non-_parametrlc aspect.

' ' Bigelow et al. (1999)used a GAM approach to
wherex; 1 is a continuous explanatory variable that model the catch rate of swordfisiiphias gladiu$
might be related in a nonlinear way to the response and blue sharkRrionace glauca in the North Pa-
variable. cific, and found highly-nonlinear relationships be-

Raising covariates to various powers should, how- tween, for example, latitude and longitude and catch
ever, be used with care and, in general, high-order rate.Rodiiguez-Maimn et al. (2003)used a GAM ap-
terms should be avoided unless absolutely necessaryproach to determine whether the catch rates of bluefin
We prefer the alternative of discretizing continuous ex- tuna (Thunnus thynnygsin the Bay of Biscay varied
planatory variables and treating them as categorical with longitude and latitude.
variables, to raising them to various powers. However, = Generalized linear mixed models (GLMMs;
both approaches have been used in practice. For examPinheiro and Bates, 20p@xtend the GLM approach
ple, Ayers (2003)modeled the effects of the day of the by allowing some of the parameters in the linear
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predictor to be treated as random variables. Severala non-zero catch is
recent analyses of catch and effort data (€bang,
2003; Miyabe ancj Takeuchi, 2003; Ré@inez—Ma’m exp(Bo + o + 3 Bixiy)
et al., 2003; Brando et al., 2004; Ortiz and Arocha, Pr= 1+ exp(fotar + 3 Fixiv)
2004 treated some of the parameters as random ef- ! et
fects. In general, random effects have been introduced
into models to deal with interactions between year and Wherepy is the probability of a non-zero catch during
other categorical variables, such as area (see Sdgtion Yeart, fo the interceptp; the parameter for thigh ex-
for further details). planatory variable, ang ; theith explanatory variable

A full discussion of GLMs, GAMs, and GLMMs,  for yeart.
and their advantages and disadvantages, is beyond A potential problem with Eq(9) arises in that each
the scope of this paper. Interested readers can Con_explanatoryvariable will have multiplelevels (for cate-
sult standard textbooks (e.ddcCullagh and Nelder, ~ gorical variables) and values (for continuous variables)
1989; Dobson, 1991; Hastie et al., 200the review  during yeat, making specification of; : a requirement
by Guisan et al. (2002)and a special issue @&co- for extracting the year effect. Common ways to over-
logical Modelling(Vol. 157, Issues 2 and 3) for more ~ come this problem include setting continuous variables
information about generalized linear and generalized to their means (or medians) over the year concerned (or

(9)

additive models, their uses, and applications. over the entire data set). For categorical variables, the
value used when applying E(Q) can be any value,

2.3. Extracting the year effect and determiningits ~ but is usually the most common value in the data set

precision (e.g.Punt et al., 2000aor an average over all values

(weighted by the relative frequency of each value in the

Most methods used to standardize catch and ef- data set). Alternatively, Eq9) can be applied setting
fort data estimate a year effect on which an index of the values for the explanatory variables to their highest
abundance can be based. The year effect usua”y re-and lowest values to determine the Sensitivity of the
flects changes in annual abundance, but there is noresults to the choice of these values.
reason that a finer, or coarser, temporal resolution  The precisionofthe year effect can be calculated an-
cannot be considered when modeling catch and ef- alytically (for some models) or using the delta method.
fort data. For exampleMaunder and Harley (2003)  However, it is not straightforward to compute the pre-
estimate quarterly standardized catch rate indices for cision of the index for delta models (see Sect®8).
the use in tuna assessments for the eastern Pacificvignaux (1994)used a bootstrapping approach to de-
Ocean. termine the precision of the year effect from a delta-log-

The year effect must be extracted from the model. normal model, whileRalston and Dick (2003)sed a
This is straightforward for models based on the log- jackknife method. Both of these methods can be highly
transformed dependent variable and a normal distri- computationally intensive, owing to the need to repeat
bution error model, since the year effect is simply the GLM analysis many times.
exp@; + 62/2), whered; is the estimate of the year Categorical variables are over-parameterized in
factor for yeart ands, the standard error af;. How- GLMs if an intercept is estimated. The most common
ever, extracting the year effect is more complicated for approach to overcome this problemis to fix the value of
some of the other models. For example, the year ef- one of the parameters (usually to zero) and estimate the
fect for yeart from the delta-log-normal approach (see values for remaining parameters given the fixed value.
Section3.3) is the prediction of the probability of a  The year effect is usually treated as a categorical vari-
non-zero catch during yeamultiplied by the predic- able with the consequence that one of the year effects
tion of the catch rate for yedr given that the catchis  (that for the ‘base year’) is set to zero and hence has
non-zero (o et al., 1992; Vignaux, 1994 The value no associated variance estimate. The variance estimate
of the year effect depends on the values of some of the for a ‘non-base year’ therefore relates to the difference
explanatory variables for some error models. For exam- between the value of the year effect for the ‘non base
ple, when applying a delta approach, the probability of year' and that for ‘base year’.
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2.4. Summary of decisions It is desirable to attempt to account for the process
that caused the zeros when standardizing catch and ef-
The previous three sections overviewed the basic es-fort data. For example, zero observations caused by
timation frameworks. However, use of these methods gear malfunctions can be detected in data by the catch
to standardize catch and effort data necessitates mak-for all species being zero; such records should be dis-
ing several decisions (e.g. how to handle zero catches,carded prior to the analysis.
which explanatory variables to consider and whichto  The simplest way to deal with zero observations
include in the final model, and diagnostic statistics). is to ignore them. This might be appropriate if zero
The following sections deal with these issues. catches occur only because of gear failure or because
fishing occurred in circumstances under which it would
be impossible to catch the species of interest. Zero
catches can also be eliminated or reduced by com-
bining records from the same stratum (e.g. by aggre-
gating hauls within a day to daily records or daily
records into monthly records). However, this may not
be sufficient to eliminate all the zero catches. Fur-
thermore, grouping observations will result in a loss

. . . of information, and may bias the analysis. For ex-
should be resolved in some way (e.g. discarded) prior to ample, if each record is associated with a different

any analyses being conducted). This is particularly the value of Some continuous explanatory variable. agare-
case for less abundant species and for bycatch species. P y » 299

Unfortunately, these species are often those for which gating da_t a across _recor<_js will necessitat(_e some _form
a standardized catch rate index is the most important pf averaging over this variable (or, worse still, ignoring
(or the only) source of data on the changes in abun- 1. . . : .

dance (e.gOrtiz and Arocha, 2004 The presence of The smplest aIFernatlve to ignoring zero catches or
many zeros can invalidate the assumptions of the anal_aggregatln_g data is t_o replace Z€ro catches by a small
ysis and jeopardize the integrity of the inferences if not number, either by direct substitution or by adding a
properly modeledlambert, 1992 The zeros can also small constgnt o 9ach cat@utteryvorth (1996pug-

lead to computational difficulties. For example, zero gests choosing this constant to give the most normal-

catches cause computational problems for the standarajzlzfodéitéxagzgggﬁsfnu dalfé:s:;g (blyggg;i(;utnh%tfor
log-linear approach because the natural logarithm of

2610 is undefined. qdding a constant to each observation I_eads to the se-
Zero observations can arise for many reasons: ries of standardized catch rates depending on the lev-
els of the explanatory variables chosen as the standard
(@) sampling a rare species or a species with low vul- ones. They suggest that the constant should be added
nerability to the gear; to both the observed values and the predicted values
(b) defining effort so that the capture of an individual  when using a log-transformed dependent variable and a
is a rare event (e.g. by defining each unit of recre- normal error model. AlternativelButterworth (1996)
ational effort to be a single hang); suggests that if an analysis is conducted in which a
(c) sampling a species that schools or aggregates (inconstant is added to all of the catch rate observations,
this case, there may be a high probability of a zero the abundance index should be based on selecting a
catch, but, when a school is encountered, the catch standard set of values for the explanatory variables and
rate may be very high); exponentiating the year effect plus the parameters mul-
(d) malfunctions of the gear; and tiplied by these standard values, and then removing the
(e) recording zeros (fishers may record only the main assumed constant from the exponentiated value, i.e.
target species if many species are caught, if the if 3 model of the form IN(CPUE + 8) = oy + Bx; +
reporting form has a limited number of entries, or ¢, s fitted to a set of data, the year factor should be

simply if they do not consider recording all species  , = expg, + Bx;) — 8 (Which can, of course, be neg-
as being important). ative).

3. Dealing with zero catches

Catch and effort databases often include high pro-
portions of records in which the catch is zero, even
though effort is recorded to be non-zero (records in
which effort is recorded to be zero must be either triv-
ial if they have zero catch as well, or in error and this
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Adding a constant to each catch value may not nec- et al., 20003 In this case, it may be more appropriate
essarily be the most appropriate way to model the datato model the data using the negative binomial distribu-
because the results of a catch-effort standardization tion, which allows for a quadratic relationship between
may be sensitive to the value of the constant. Despite the mean and the variance (i.e. Y€ 11 + 2/k, where
the availability of objective methods for determining kis a parameter to be estimated; €gnt etal., 2000a
the size of the constanBérry, 1987; Porch and Scott,

1994, the value of the constant is usually chosen arbi- 3.2, Zero-inflated models

trarily. Other simple methods, such as ignoring all zero

observations, may also have undesirable consequences The proportion of zeros in the Poisson and nega-
such as positively biasing the standardized catch rates,tive binomial distributions is related to the distribution
but to a different extent each year. Fortunately, there are for the non-zero values (i.e. for a given distribution
more appropriate methods to deal with zero catches. of non-zero observations there is only a single pos-
These methods fall into three categories: (a) statistical siple proportion of zeros). However, if the processes
distributions that allow for zero observations; (b) meth- that lead to zero observations are not the same as those
ods that inflate the expected numbers of zeros; and (c)that lead to non-zero catches (e.g. gear malfunction,
methods that predict the proportions of positive catches whether the species under consideration is being tar-
and model the catch rate when the catchis non-zero sepgeted), zero-inflated distributions may be more appro-
arately (the delta approach). Zero-deflated distributions priate (ambert, 1992; Hall, 2000These distributions
are also possible, but seldom arise in practRel¢ut are a mixture of two distributions, a degenerate compo-
etal., 1993. nentthatis zero with certainty and a second component

Historically, ignoring zero observations or replacing  thatincludes zeros and positive values (e.g., the Poisson
them by a constant was the most common approach. distribution). The general form of these distributions is
Probability distributions that allow for zero observa-
tions have been used in some cag¢BC, 1993 but, _Jw+@-w)f(0), y=0,

currently, the most popular way to deal with zeros Pr(Y =y) = 1—-w)f(y) otherwise (10)

is through the delta approach (e.ggg et al., 1992;

Vignaux, 1994; Ayers, 2003 wherew is the probability that an observation comes
from the degenerate component.

3.1. Models for count data The parameters to be modeled as functions of the

explanatory variables are then the probability of a zero

Catch data are often recorded as counts of individ- observationw, and (usually) the mean of the second
uals, for which several statistical distributions are ap- distribution defined by(y). In principle, the processes
propriate. These distributions explicitly allow for zero ~causing the zero catches may be the same as those lead-
counts and model integer values. Catch in weight or ing to the distribution of positive values, so that the
catch rate can be converted into an appropriate form values for the parameters of these two models may be
by rounding the data to the nearest integer, but the usefunctionally connectedLiambert, 1992 However, it
of continuous distributions may be more appropriate is more likely that the processes causing the additional
for these types of datdullahy (1986)notes that the ~ zeros are different, and should be modeled separately.
interest in modeling count data explicitly is due to the Two commonly used zero-inflated distributions are the
recognition that the use of continuous distributions to zero-inflated Poisson (ZIP) and zero-inflated negative
modelinteger outcomes might produce inconsistent pa- binomial (ZINB).
rameter estimates.

The standard distribution for modeling count data 3.3. Delta approaches
is the Poisson distribution. This distribution assumes
that the encounter rate of individuals is constant, with  An alternative to using zero-inflated models is to
the variance being equal to the mean. However, actual model the probability of obtaining a zero catch and the
count data are often overdispersed relative to the Pois-catch rate, given that the catch is non-zero, separately.
son distribution (e.gBannerot and Austin, 1983; Punt These models have also been termed hurdle models
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(Cragg, 197}, because a hurdle must be overcome be-
fore a positive observation occurs. If the realization is
positive, the hurdle is crossed. The conditional model
of the positives is governed by a standard distribution
thatis defined for positive values. For example, one mi-
nus the probability of a zero catch could be considered
to be the probability of encountering a school, while

the distribution of the positive values is the probability

distribution of the school size. The general form of the

delta model is

w, y=0,

(1—w)f(y) otherwise (112)

WW=W={

Note that the two distributions, implied by Eq4.0)
and (11a)are formally identical in that, if

w*=1—(1—w)l— £(0)) and

0

f)
1-f(0)’

=0,
Y (11b)

fﬂw={ 120

then Eq.(10) reduces to Eq(11a) with w replaced
by w+ andf(y) replaced byf" (y). What are different
are the parameters to be modeled: in the laiters
the probability of a zero observation, whereas, in the
former, it is the probability of an ‘extra’ zero.

A binary random variable is zero for a zero ob-
servation and unity otherwise, and has, by definition,
a Bernoulli distribution with probability parameter,
w. The probability of obtaining a zero observation is
therefore usually modeled using the binomial distri-
bution (e.g.Vignaux, 1994; Steéfnsson, 1996; Punt
et al., 2000a; Rodguez-Main et al., 2003 A vari-
ety of distributions could be used to model the catch
rate given that it is non-zero. The most commonly se-
lected distribution is the log-normaAitchison, 1959,
as inVignaux (1994)andPorter et al. (2003)The use
of this distribution has, however, been criticized for a
lack of robustnessMyers and Pepin, 1990; Syrjala,
2000. Other distributions considered when applying
the delta approach are the gamma distributidagke
and Lankester, 1996; Punt et al., 20))Ghe Poisson
distribution (e.gOrtiz and Arocha, 2004and the neg-
ative binomial distributionRunt et al., 2000a
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4. Selecting explanatory variables

The main goal in standardizing catch and effort data
is to explain the variation in catch rate that is not a
consequence of changes in population size by identify-
ing explanatory variables that reduce the unexplained
variability in the response variable. Both qualitative
and quantitative variables can be included as explana-
tory variables in most methods. Qualitative variables
are treated as factors while quantitative variables can
be treated either as ordered values and used in func-
tions, or discretized and treated as factors. In principle,
the fraction of the variability explained can increase
substantially by including more and more explanatory
variables. However, adding explanatory variables will
generally reduce bias but increase the variance of the
index of abundance. This section outlines the steps
commonly followed to decide on which explanatory
variables should be included when standardizing catch
and effort data.

4.1. Choosing explanatory variables to consider

The first step is to determine which explanatory
variables are available and which of these should be
considered. Explanatory variables should, however, be
considered in an analysis only if there is an a pri-
ori reason that they may influence catchability. The
year effect should, of course, always be included in
the model, even if not statistically significant, because
it is the quantity of interest. There are often many
explanatory variables. For exampléorn (2003)con-
sidered 23 possible explanatory variables when stan-
dardizing the catch and effort data for lingénypterus
balcode} off New Zealand. These variables included
the type of trawl gear, the time of day when the trawl
was used, the vessel call sign, the characteristics of
the vessel (length, breadth, etc.), and an environmental
factor (the southern oscillation index). Other variables
considered routinely when standardizing catch and ef-
fort data include area, month, and the catch (or catch
rate) of species other than those under consideration.
Including the catches (or catch rates) of other species
(e.g.Punt et al., 200Dais meant to be a way of in-
cluding the impact of fishers targeting species other
than that under consideration in multi-species fisheries.
However, if the other species are closely related to
the species of interest and are being fished down at
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the same time, the inclusion of these other species4.2. Model selection

as explanatory variables may remove time trends in

catch rate which should be attributed to the year ef-  There are two general categories of methods to

fect. determine which explanatory variables should be in-
In some cases, the decision about which variables cluded in an analysis: (a) methods based on the fit to

to include may be quite subtle. For example, should the data that include a penalty based on the number of

each vessel be included as a categorical variable (e.g.parameters estimated; and (b) methods that compare

Punt et al., 2000a; Battaile and Quinn, 2D0@r model predictions to observations. The difference be-

should the characteristics that define a vessel be in-tween these methods is that the first category uses all

cluded as explanatory variables (eMignaux, 1998. of the data set to estimate the model parameters, while

This choice depends on how the vessel is thought to the second group generally uses only part of the data

influence catch rate and what information is avail- set to estimate the parameters and the remaining part

able. For example, if the captain is thought to be
the main influence on catchability through differ-

to test predictions.
Standard hypothesis testing methods (E-gests,

ences in skill and targeting practices, then a ves- likelihood ratio tests, and score tests) can be used

sel effect may be more appropriat®unt et al.,
20003.

Inclusion of explanatory variables that are them-
selves correlated, the so-called problem of ‘collinear-
ity’, should be avoided. This can make the model
fitting process numerically unstable or lead to prob-
lems similar to those of over-fitting. For example, the
length of a vessel is almost invariably highly corre-
lated with its breadth, and including both of these
quantities as explanatory variables will not contribute
very much more to the predictive ability of the model
than just one of them, or some simple function of the
two. One way to avoid the problem of using corre-
lated explanatory variables in an analysis is to ex-
amine the explanatory variables prior to conducting
the actual analysis and to identify a set of explana-
tory variables that are not highly correlated. How-
ever, the presence of collinearity is less of a problem
if the goal of the analysis is to generate an index

to compare a more complicated model (i.e. more pa-
rameters) to less complicated modé¥cCullagh and
Nelder, 1989; Hilborn and Mangel, 199 These meth-
ods can be automated to select the ‘best’ model. How-
ever, they can be applied straightforwardly only to
nested models. In contrast, information-theoretic meth-
ods, such as the Akaike information criterion (AIC;
Akaike, 1973; Burnham and Anderson, 20@ad the
Bayesian information criterion (BIG3chwarz, 1978

are methods that can also be applied to non-nested mod-
els:

AIC = =2 In ¢ + 2p,

12
BIC=-2In¢+ pIn(n) (12)
wheret is the likelihood function evaluated at its max-
imum, p the number of parameters, andhe number
of observations.
As the number of data points increases, it becomes

of relative abundance for use in a stock assessmentmore difficult to accept additional parameters under the
model rather than to determine the variables that ex- BIC than under the AIC. For categorical variables, it is
plain variation in CPUE. This is because additional possible to test a single level in a categorical variable
variables that are correlated tend not to add much ex- (one parameter) or the categorical variable as a whole
planatory power beyond the first variable selected, so (the number of parameters is equal to the number of
that they are rejected in a stepwise selection proce- levels in the categorical variable minus 1).
dure. One ‘problem’ with both standard hypothesis test-
If catch is used as the dependent variable rather ing methods and information-theoretic approaches is
than catch rate, the measure of effort should be in- that most sets of catch and effort data consist of thou-
cluded in the analysis as an explanatory variable or sands (or tens of thousands) of points. One conse-
as an offset. In fact, multiple effort measures can be quence of this is that AIC or BIC may identify a model
included as explanatory variables, thereby allowing with an enormous number of explanatory variables. A
the data to choose the most appropriate measure ofcommonly-applied (but ad hoc) way to deal with this
effort. (e.g.Horn, 2003 is to add explanatory variables only
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Fig. 2. Diagnostic plots for the goodness-of-fit of a log-linear model to the catch and effort data for the blue grévhad@®ragzelandige
off the west coast of Tasmania, Australia. The dotted line in the upper left panel is the geometric mean catch rate, and the solid line is the
standardized catch rate index.

if the deviance is reduced (8 is increased) by a pre-  such as those to identify outliers, should also be exam-
specified percentage (e.g. 0.5 or 2%). ined routinely when analyzing catch and effort data.
Standard regression diagnostic statistics (egy.2) Cross-validation is also a commonly used method to
should also be examined to attempt to identify model select explanatory variableBldstie et al., 2001 This
misspecification and heteroscedasditieCullagh and involves using a ‘training data set’ (a subset of the total
Nelder, 1989; Ortiz and Arocha, 2004ig. 2 shows data set) to estimate the parameters of the model and
a variety of diagnostics, including standardized resid- using the resulting model to predict the remaining data
uals versus the fitted values (to assess whether model(the ‘test data set’). The ability of the model to predict
misspecification is occurring), the square root of the ab- the test data set is used to select the explanatory vari-
solute values of the standardized residuals versus theables to include in the model. If too many explanatory
fitted values (to assess whether the variance changesvariables are selected, the model fits the training data
as a function of the predicted value—it should not in set very well, but is fitting noise rather than signal, and
this case), the observed versus the predicted values (tatherefore cannot predict the test data set well. If too
assess qualitatively whether the explanatory variables few explanatory variables are used, the model does not
are indeed able to reduce the variance in the data), andadequately mimic the data, and fits both the test and
guantile—quantile plotszig. 2shows only a small sub-  training data sets poorly. There are several versions of
set of the possible diagnostic statistics. Other statistics, cross-validation, but a popular one that makes more use
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of the data than simple cross-validationkifold val- Standard regression diagnostics often identify po-
idation Hastie et al., 2001 The data are divided into  tential outliers. However, it is our experience that the
k equal parts and the model is rirtimes, each time  presence of a small number of outliers will not affect
rotating through each of thesubsets as the test data the trends in catch rate substantially, primarily because
set and using the remaining data as the training datacatch-effort data sets are commonly so large that a few
set. points can have only a limited impact on the final out-

One problem with cross-validation is that it does comes. In cases where outliers are considered prob-
not necessarily parallel the likelihood inference that is lematic, robust regression can be used to reduce the
often used to estimate the model parameters. This isinfluence of the outliersRousseeuw and Leroy, 1987
because a test criterion is required, and simple least

squares are often usethdstie et al., 2001 How- 5. Dealing with interactions

ever, the likelihood function may differ from the least-

squares criterion. Interactions among factors occur fairly regularly
when standardizing catch and effort data. The most

4.3. Error structure assumptions common interactions are among year, month/week/day

and area. Discovering significant (and substantial) in-

Often, relatively little attention is paid to determin- teraction terms can raise some interesting hypotheses.
ing whether the distributional assumptions are actually For example, discovering a year vessel interaction
valid (e.g. the residuals from a log-linear regression are implies that the relative abundance has changed dif-
normally distributed). Selection among statistical mod- ferently as seen by different fishers. However, explain-
els can be carried out by examining the relationship be- ing interactions can be difficult, and there is often no
tween the average catch rate and the variance in catchrational explanation for some interactions. A year
rate Oong and Resterpo, 1996; Punt et al., 200l vessel interaction can be caused by several factors: dif-
note thatDick (2004)finds this a weak method for se-  ferent vessels targeting different size classes of fish or
lecting among statistical models. A linear relationship fishing in different areas, and some fishers having up-
supports an overdispersed Poisson error model, andgraded their equipment and others not having done so.
variance in catch rate proportional to the square of the In the latter case, it may be possible to eliminate the in-
average catch rate suggests the log-normal and gammderaction by including additional explanatory variables
error models. The negative binomial error model im- (such as the equipment used on a vesselRsd®ns et
plies that the variance in catch rate is a function of both al. (1998) Bishop et al. (2000andRodiiguez-Mam
the average catch rate and the square of the averageet al. (2003)or examples of catch-effort standardiza-
catchrate. The choice of the error model is often depen- tions that included factors for skipper experience and
dentonthe data points at high catch rates, which may bethe use of aids such as the Global Positioning System
few in number (e.gPunt et al., 2000aln addition, the and plotters).
catch rates often have downward trends over time, and  Identifying significant interactions with year means
this trend may inflate the variance in catch rafesrit thatitis no longer straightforward to use the year factor
et al., 2000p Methods such as quantile—quantile plots as the basis to develop an index of abundance. There
(Fig. 2) can also be used following the application of are avariety of approaches for dealing with interactions
a model to determine whether the residuals are consis-when constructing an index of abundance. The first ap-
tent with the assumed error modBick (2004)shows proach is to explicitly ignore any interactions between
that AIC can be used to select among error structure year and other explanatory variables (eignaux,
assumptions. 1994. This approach avoids consideration of the prob-

It is possible to allow the variance of the residu- lem, but may lead to a biased index of abundance if
als to depend on explanatory variables. For example, substantial interactions with year are present.
Butterworth (1996)modeled the variance of the resid- If an interaction between year and a factor (say
uals about a log-linear regression asH{8/E)?, where month) is found, an appropriate way to develop the in-
the values forw and 8 were obtained using iterative  dex of abundance (considering here the simplest case
re-weighting. of a log-linear regression approach) is to average the
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yearx month interaction terms over the year: and area. However, this is seldom the case (e.g., if the
fishery developed in one area and expanded spatially
Iy = ZZmItﬂn (13) thereafter). The solution to this probler@dmpbell,
m

1998, 2004; Punt et al., 2000a; Walters, 20830 de-
wherel; is the relative abundance index for year  velop algorithms for specifying the missing yeaarea
ltm the index of abundance for yeaiand monthm interactions. The algorithms should use information for
(calculated from the relevant yearmonth interaction the yearx area combinations with data to interpolate
term), andz, the weighting factor for montn (where (and perhaps extrapolate) to the remaining combina-
> omzm =1). tions. Unfortunately, the resulting index of abundance
An appropriate choice fory, could be 1/12 if the (and hence the results of any subsequent stock assess-
fishery occurred over the entire year (D.S. Butterworth, ment) may be highly sensitive to the algorithm chosen
pers. commun.). for interpolation and extrapolatiorCampbell, 1998;
Dealing with yearx area interactions is not as Butterworth et al., 2003
straightforward as dealing with year month inter-
actions because it is difficult to define the ‘area’ which 6, Selecting data points
would be needed to apply E¢i.3). One way to do this
is to define a ‘habitat area’ for each area included in  The bulk of the world’s marine fish species are
the analysis and use that in the weighting scheme (e.g.caught in fisheries that involve multiple target species.
Quinnetal., 1982; Puntetal., 2001b; Campbell, 2004 This is particularly true for species caught in trawl
Puntetal. (2001b)eighed the yeax areainteractions  fisheries and those caught recreationally. Given the re-
by the physical area between 20 and 80 m depth of eachquirement to standardize the catch and effort data for
area in the analysis when standardizing catch and ef-a species that is caught in a multi-species fishery, it

fort data for gummy sharkMustelus antarcticusoff seems desirable to use only the effort that was directed
southern Australia. at that species. Unfortunately, this is much easier said
Another approach to dealing with yeararea in- than done, even when fishers claim to record their target

teractions is to recognize that these interactions im- species in logbooks. In many cases, the fisher may just
ply different trends in abundance in different areas, record the most prevalent species as the target species.

which, in turn, implies some form of spatial structur- The most common way to deal with this problem is
ing of the populationPunt et al. (2000a9tandardized  to base the catch-effort standardization on the records
the catch and effort data for the school shaBale- for those fishers who appear to target the species un-

orhinus galeusoff southern Australia, and noted dif-  der consideration. Fishers can be chosen using criteria
ferent trends in standardized catch rate in different selected by experts (e.g., assessment scientists and fish-
areas Fig. 3). Rather than attempting to pool the in- ers). These criteria can include a minimum number of
dices across areas in some waynt et al. (2000b)  years in the fishery, a minimum number of records,
assessed this population using a population dynam-and a minimum average (or median/total) catch. For
ics model that was spatially structured. Developing example,Taylor (2003)standardized the catch and ef-
spatially-structured population dynamics models is not fort data for orange roughyHpplostethus atlanticys
possible in all cases because these models rely on in-based on data for vessels that had 20 or more positive
formation, say, on movement. catches in at least 4 years, whiint et al. (2001b)

Ifayearx areainteraction is assumed to have arisen based their standardization of the catch and effort data
because of the random changes in the distribution of for gummy shark on vessels that satisfied four crite-
the population (unlike those frig. 3), it is possible to ria (in the fishery for at least 5 years, a median annual
assume that the year area interactions are random catch (all sharks) of at least 10 metric tons (t), a median
effects and use a generalized linear mixed model to annual catch (gummy shark) of 5t, and gummy shark
standardize the data (e.@hang, 2003; Miyabe and constituting more than 60% of the total shark catch).
Takeuchi, 2008 Both Punt et al. (2001baind Taylor (2003)examined

The use of Eq(13)implies that yeax areainterac-  the sensitivity of their results to the choice of criteria
tion factors are available for all combinations of year for selecting vessels.
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Fig. 3. Standardized catch rate indices for school shark in four regions off southern Australia.

An alternative method to overcome the problem ysis if they contain obvious errors. Typical errors in-
of defining target effort is to define the characteris- clude: (a) missing values (e.g. on location, catch, etc.),
tics of target effort. These characteristics could include (b) very long (or short) tow duration (or large num-
the depth or area fished, or the other species caught.ber of sets), (c) unrealistically long nets, and (d) unre-
For example Stephens and MacCall (2004%ed this alistically high catches or catch rates. Although most
method to develop a catch rate index for bocaccio rock- catch-effort data sets are sufficiently large that the oc-
fish (Sebastes paucispinifrom data for recreational  casional outliers should not affect the final estimates, it
party boat fishing trips off California. These data do is necessary that the analyst check the data for obvious
not contain information on where fishing occurred. Fur- errors and remove them. If a large humber of records
thermore, this recreational fishery is directed at a wide are rejected because they are missing data for a single
range of species, including some, such as pelagic tunas explanatory variable, it may be better to retain the data
that occur where it would be impossible to catch bocac- and ignore the explanatory variable, particularly if it
cio rockfish.Stephens and MacCall (200d¢veloped explains only a small proportion of the total variability.

a method that associate the presence of bocaccio rock-

fish in the catch of a trip with the other species caught

during the trip and use this to select which trips to use 7. Using indices of abundance in stock
in a catch-effort standardization. assessment models

The preceding discussion has focused on exclud-
ing records that are likely to have been directed at  The primary reason for standardizing catch and ef-
species other than that under consideration. Catch-fort data is to develop an index of relative abundance.
effort records should also be rejected for use in an anal- This can be used as the basis for management advice
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directly, but is typically used when fitting a stock as-  The likelihood function for the index of abundarce
sessment model. To use an index of relative abundancejs therefore:

estimated from catch and effort data in a stock assess-

ment, the index of abundance must first be extracted L(I|0) = I_LL(MQ) = l_[
from the standardization analysis (see Sec@and

1
t\/ 27TU{I;

then an appropriate fitting method, usually a likelihood [In I, — In(gN,)]?
function, must be selected. xexpl 5 (15)
t

There are two approaches to include an index of
relative abundance in a stock assessment: where@ is the vector of the parameters of the stock

assessment model.

(a) the index can be assumed to be proportional to

abundance (e.@utterworth and Andrew, 1984,
Maunder and Starr, 200Znd the difference be-

tween the observed and model-predicted indices

attributed to observation error; or

(b)
fort’ (essentially by dividing the catch by the index)
and the ‘standardized effort’ included as a model
input to predict the annual catch (e.8chnute,
1977; Fournier and Archibald, 1982; Deriso et
al., 1985; Fournier et al., 1998; Dichmont et al.,
2003.

The firstis used far more frequently than the second.

the index can be used to derive ‘standardized ef-

There are several ways to specify the observation
error standard deviations:

(a) assume that; is independent of time, i.ec; = o
(e.g.Butterworth and Andrew, 1984

(b) assume that; is the product of a year-specific stan-
dard deviationw,, and an overall variance scaling
parametels,i.e.,o; = w;o (e.g.Cope etal., 2003;
Maunder and Starr, 2003and

(c) assume that? is the sum of a year-specific vari-
ance,w?, and an additional variance tern®, i.e.,

o; = \/w? + o2 (e.g.Francis et al., 2003; Punt and
Butterworth, 2003

The parametes is either pre-specified based on a

Specifically, most age- and size-based approaches topriori considerations (e.gerancis et al., 2002or is

fisheries stock assessment (eMiethot, 1993, 2000;
Punt and Kennedy, 1997; Hilborn et al., 20Gfeat

treated as a parameter of the model to be estimated.
The values ofv, need to be pre-specified based, say, on

the indices of relative abundance this way. The most the results of the catch-effort standardization (but see
common assumption about observation error is that it Francis, 1999: Maunder and Starr, 2G68the correct

is log-normal:

It = th eXp(St), & ™~ N(O, 0'12) (14)
whereq is the catchability coefficient); the model
estimate of the abundance during yéaando; the
standard deviation of the observation error for year
t.

The definition of the abundance to which the index

relates is the key to an appropriate use of a standardize
catch rate index in a stock assessment. This is becaus

different components of the population may exhibit dif-

ferent trends over time. Abundance can be defined in

interpretation Oﬁrtz from a GLM standardization). In
general, the variability about the year factors is consid-
erably less than that between the index of abundance
and the model predictions (e.Gope et al., 2003 so

that the value ob is usually much greater than unity
when using method (b) and much greater thawhen
using method (c). The reasons for this include that
catchability may vary among years (so all the catch
rates for a year may be affected by the same factor)

dand that the standardization may have ignored a key
e{actor.Francis et al. (2003nalyzed a large number of

2 |n this case, thé; in the denominator of the first term is the

terms of biomass or numbers, depending on whether Jacobian from the transformation of variabl€agella and Berger,

catch is measured in numbers or in weight, and the
abundance is usually population numbers (or biomass)

modified by the age- or size-specific selectivity of the
gear used in the fishery.

199Q p. 50, Theorem 2.1.2). This term is often omitted from the
log-normal likelihood function presented in the fisheries literature
(e.g.,Hilborn and Mangel, 199%. 248;Maunder and Starr, 2003
However, becausk is a constant, its inclusion or otherwise has no
effect on the estimates of the parameters of the model.
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CPUE and research survey data sets and found that thehat included the true value more often than the two-
coefficient of variation for the combined effects of ob- step approach of first standardizing the catch and effort
servation error and annual variation in catchability was data and then including its results in an assessment
~0.15-0.2. Although not commonly done, E85)can model. One advantage of integrating the catch-effort
be extended to allow for the correlation among the year standardization with the fitting of the stock assess-
factors that results from all the outputs being from the ment model is that the uncertainty associated with the
same model Nlyers and Cadigan, 1995; Cooke and catch-effort standardization, including temporal corre-
Lankester, 1996; Francis, 1999 lation, is automatically accounted for, when the uncer-
Methods (b) and (c) should not be used if the year- tainty associated with any model outputs is computed.
specific weightsw?, are based on the standard errors Unfortunately, integrating the catch-effort standardiza-
of the year effects, and the year effect for the base yeartion with the stock assessment can be very computa-
is set equal to zero (and so has no varians&gunder tionally demanding. This has restricted its application
and Starr, 2008 A simple way to avoid this problem to date.
is apply method (b), where; is some function of the
sample size for yedr Francis (19995uggests a more
elegant solution to this problem by dividing the annual
indices by the geometric mean index over all years,

| 8. Discussion

1/n Standardization of catch and effort data to develop
= Iy(l_[y/fy’) , wheren is the number of years  an index of the relative abundance of a fish population
for which indices are available. The main advantage assumes that the explanatory variables available are
of this ‘canonical’ form is that the standard error for sufficientto remove (or explain) most of the variation in
each year can be calculated, and is independent of thethe data that is not attributable to changesin abundance.
year that is chosen as the base year (R.l.C.C. Francis,However, even if catch and effort data are standard-
NIWA, pers. commun.). ized to remove the impact of all known factors, there is

The value ofs? determines, in addition to the level  still no guarantee that the resultant index of abundance
of uncertainty, the amount of information provided by is linearly proportional to abundance (as is assumed
the CPUE index relative to any other sets of data when in Egs.(14) and (15). Cooke and Beddington (1984)
there is more than one source of information in a stock andCooke (1985§escribed various scenarios in which
assessment. Therefore, in some cases, it may be ap<atchrate is unlikely to be linearly related to abundance.
propriate to fixo at a level that reflects the quality Cooke and Beddington (198dighlighted the possibil-
of the data or the validity of the assumptions under- ity that catch rates may decline more slowly than abun-
lying its use (e.g. standardized CPUE is proportional dance (‘hyperstability’). Based on a meta-analysis of
to abundance). This is particularly important when a 297 CPUE data series, and extending the woiBuafin
CPUE index is available for many years, and an index et al. (2000) Harley et al. (2001¥ound strong evi-
of abundance from survey data is only available for a dence that CPUE was hyperstable (i.e. CPUE remains
few years. The greater number of data points for the high while abundance declines). However, the opposite
CPUE index can drive the analysis even if fixed at problem (‘hyperdepletion’) can also occur (eRyince
a relatively high level. and Hilborn, 1998

In principle, the stock assessment and the catch- The goal of the standardization is to remove most
effort standardization can be conducted simultaneously of the annual variation in the data not attributable to
(e.g.,Maunder, 2001; Maunder and Langley, 2D04 changes in abundance. However, the fraction of the
In such an ‘integrated analysis’, the parameters of the overall variation in the data explained by a catch-effort
population dynamics model and those related to catch- standardization can be disappointingly low. For ex-
effort standardization are estimated simultaneously by ample, when standardizing catch and effort data for
optimizing an objective function for all sources of data orange roughy east of New Zealand using the delta-log-
available to the stock assessment model (e.g. catch-at-normal approachAnderson (2003)vas able to explain
age data)Maunder (2001showed that this integrated  only 14.5% of the deviance associated with the non-
analysis produced much narrower confidence intervals zero catches and 7.5% of the deviance associated with



156 M.N. Maunder, A.E. Punt/ Fisheries Research 70 (2004) 141-159

whether a catch is positive, even though information Although many methods are now available to stan-
was available on 12 (potential) explanatory variables. dardize catch and effort data, little effort has been
Not surprisingly, the standardized index of abundance directed toward identifying the most appropriate meth-
was almost identical to the annual geometric means ods for specific instances. Some simulation work (e.g.
of the catch rates. However, there is an interaction be- Porch and Scott, 1994; Maunder, 2001; Campbell,
tween the level of variation explained and the level of 2004 has been undertaken, but additional work along
data aggregation (Paul Starr, pers. commun.). Whenthese lines is clearly a high priority for the future.
the data are highly disaggregated (e.g. ‘tow-by-tow’ Finally, although this paper has focused on standard-
data), the explanatory power is generally low and can ization of fishery-dependent data, there is no reason
be ‘increased’ by aggregating the data. It may there- that the methods outlined above could not be applied
fore not be appropriate to compare the level of varia- to fishery-independent data. For example, some of
tion explained among different analyses, and analysts the methods described above are used to standardize
should not base their perceptions about the reliability of fishery-independent dive survey density estimates for
their index of abundance on the extent of the variation paua Halitiotis iris) in New Zealand for the effects of
explained. diver and time of the year (e.Breen and Kim, 2003
This review has focused on the methods used most while Cope et al. (20033tandardized the indices of ju-
frequently to standardize catch and effort data, specifi- venile abundance from power plant impingement rates
cally those that can be implemented using such popular for the effects of power station and season.
statistics packages as SPlus and SAS. However, this is
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