
Contents lists available at ScienceDirect

Fisheries Research

journal homepage: www.elsevier.com/locate/fishres

Testing robustness of CPUE standardization and inclusion of environmental
variables with simulated longline catch datasets
Francesca C. Forrestala,⁎, Michael Schirripab, C. Phillip Goodyearc, Haritz Arrizabalagad,
Elizabeth A. Babcocke, Rui Coelhof, Walter Ingramg, Matthew Laurettab, Mauricio Ortizh,
Rishi Sharmai, John Walterb
a Cooperative Institute of Marine and Atmospheric Science, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
bMiami Laboratory, Southeast Fisheries Science Center, National Marine Fisheries Service, 75 Virginia Beach Drive, Miami, FL, 33149-1099, USA
c 1214 North Lakeshore Drive, Niceville, FL, 32578, USA
dAZTI Tecnalia, Marine Research Division, Herrera Kaia Portualdea, z/g 20110, Pasaia, Gipuzkoa, Spain
e Rosenstiel School of Marine & Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149, USA
f Instituto Português do Mar e da Atmosfera (IPMA I.P.), Avenida 5 de Outubro s/n, Olhão, 8700-305, Portugal
gNOAA Fisheries, Southeast Fisheries Science Center, Mississippi Laboratories, 3209 Frederic Street, Pascagoula, MS, 39567, USA
h ICCAT Secretariat – Corazón de María, 8, 28002, Madrid, Spain
iNOAA Fisheries, Northwest Fisheries Science Center, 1201 Lloyd Boulevard, Suite 1100, Portland, OR, 97232, USA

A R T I C L E I N F O

Handled by A.E. Punt.

Keywords:
Catch/effort
Longline
Statistical models
Simulation
Stock assessment
Environmental effects

A B S T R A C T

Environmental variability changes the distribution, migratory patterns, and susceptibility to various fishing
gears for highly migratory marine fish. These changes become especially problematic when they affect the
indices of abundance (such as those based on catch-per-unit-effort: CPUE) used to assess the status of fish stocks.
The use of simulated CPUE data sets with known values of underlying population trends has been recommended
by ICCAT (International Commission for the Conservation of Atlantic Tunas) to test the robustness of CPUE
standardization methods. A longline CPUE data simulator was developed to meet this objective and simulate
fisheries data from a population with distinct habitat preferences. The simulation was used to test several sta-
tistical hypotheses regarding best practices for index standardization aimed at accurate estimation of population
trends. Effort data from the US pelagic longline fleet was paired with a volume-weighted habitat suitability
model for blue marlin (Makaira nigricans) to derive a simulated time series of blue marlin catch and effort from
1986 to 2015 with four different underlying population trends. The simulated CPUE data were provided to stock
assessment scientists to determine if the underlying population abundance trend could accurately be detected
with different methods of CPUE standardization that did or did not incorporate environmental data. While the
analysts’ approach to the data and the modeling structure differed, the underlying population trends were
captured, some more successfully than others. In general, the inclusion of environmental and habitat variables
aided the standardization process. However, differences in approaches highlight the importance of how ex-
planatory variables are categorized and the criteria for including those variables. A set of lessons learned from
this study was developed as recommendations for best practices for CPUE standardization.

1. Introduction

Indices of abundance derived from fishery-dependent time series of
catch per unit effort (CPUE) are often an integral part of the stock as-
sessment process. Thus, there is a need to understand the processes that
might lead to biases in the indices. Nominal CPUE values are often not
proportional to the abundance of the stock being assessed (Campbell,
2015, 2016; Maunder et al., 2006; Maunder and Punt, 2004). Variations

in CPUE can be the result of changes in the abundance of the fish stock,
shifts in movement patterns, environmental and climatic changes as
well as changes in fishing strategy over time (Bigelow et al., 1999). Use
of CPUE to track abundance is based on the assumption that catch (C) is
related to the effort (E), the abundance (N) and the catchability (q):

=C qEN

The use of the CPUE (C/E) as an index of abundance (N) thus depends
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on the assumption that catchability is constant or that changes in
catchability can be modeled and removed from the index. Changes in
catchability can be related to any changes to the fishing gear, species
targeting and fishing methods. Additionally, the spatial extent of the
fish population or the fishery may shift over time, influencing the
fraction of the stock that is available to each fleet. Habitat suitability,
such as dissolved oxygen concentration and water temperatures in the
pelagic environment, can affect fish availability or catchability (e.g., by
altering fish behavior). Incorporation of environmental covariates into
index standardization might address some of these issues, but this is not
routinely done. Best practices for incorporating environmental vari-
ables in CPUE standardization have not been defined, which adds un-
certainty in choosing standardization methods aimed at minimizing
CPUE bias.
A species distribution model (SDM) and longline simulator (LLSIM)

were developed to test methods of CPUE standardization, amongst
other goals. This paper uses simulated longline catch data sets with
known values of underlying population trends to test the robustness of
CPUE standardization methods. A species distribution model for
Atlantic blue marlin (Makaira nigricans) was developed using pop-up
satellite archival tag (PSAT) data paired with detailed data describing
the physical environment within the model region (Fig. 1) to predict
fish abundances using habitat suitability modeling (Goodyear et al.,
2017; Goodyear, 2016). This approach is commonly used for predicting
habitat quality from habitat suitability indices based on ecological
niche theory (Hirzel and Lay, 2008). Applications to billfish species
include the identification of potential new fishing grounds (Chang
et al., 2012, 2013), and forecasts of the effects of climate change
(Robinson et al., 2015). This approach is paired with fishing fleet dy-
namics, using historical effort distribution and gear configurations of
the US pelagic longline fishery. Fleet catchability was defined to be
gear-specific, while spatial effort allocation mimicked observed long-
line fishing locations. The simulated fleet was used to sample the blue
marlin populating the SDM throughout the year, producing simulated
catch per unit effort data based on the interactions between fishing
effort and habitat suitability (i.e., fish availability) as well as gear
configuration (gear efficiency) (Forrestal et al. (under review)). The
historical effort and gear configurations of the US longline fleet as
adapted for use in the longline simulator are extensively discussed in
Forrestal et al. (under review). Four distinct population trends were

simulated for blue marlin (constant, increasing, decreasing, and fluc-
tuating) to produce simulated catch datasets. These datasets were
provided to eight stock assessment scientists with expertise in stan-
dardizing CPUE indices who used methods of their choice to standar-
dize the indices. The goals of this work are to determine how well
different standardization methods currently in use capture population
trends and if the inclusion of environmental and habitat data aids in the
standardization process.

2. Material and methods

2.1. Species distribution model

The simulated population model is defined in two steps. The first
input is the population abundance in each year and month of the time
series (here equal to September 1986 to December 2015). The second
input is the relative population density per one-degree latitude and
longitude and water depth gradient defined by the SDM (Goodyear
et al., 2017; Goodyear, 2016) based on the species habitat preferences
for each model time-step. The densities were normalized so that the
sum of the products of the relative density× volume over each latitude,
longitude, and depth= 1.0. The SDM provided the average distribution
of the entire population by month and year during hours of daylight
and nighttime to account for diel vertical redistribution. The method
accounts for temporal changes in the location and volume of the habitat
associated with seasonal and longer-term changes in the environment.
For example, it directly estimates the vertical density distributions in
areas affected by the oxygen minimum zones (Stramma et al., 2012).
The SDM uses published blue marlin oxygen tolerance information
(Brill, 1994), coupled with temperature utilization and day-night ΔT
patterns from PSAT-tagged blue marlin to predict the species distribu-
tion from the detailed environmental data (Goodyear et al., 2017;
Goodyear, 2016).
Four population trends were used in this study, a constant popula-

tion of 500,000 individuals, a decreasing population with a 70% re-
duction over 29 years, an increasing population by 70% over 29 years
and a population that fluctuated around 500,000 individuals over the
time period (Figs. 2–4). The declining pattern is roughly equivalent to
the values estimated in the most recent assessment (Anon., 2012) and
the increasing population is its mirror image.

2.2. Environmental data

Modeling the spatial distribution of a species requires quantitative
data about the physical environmental variables that determine its
habitat. Temperature and to a lesser extent dissolved oxygen con-
centration influence blue marlin habitat use (Block et al., 1992). En-
vironmental data were obtained though the Community Earth System
Model (CESM1), which is a global ocean-sea-ice model coupled to a
biogeochemistry model BEC (Biogeochemical Elemental Cycle)
(Danabasoglu et al., 2012; Long et al., 2013). The model covers the
global ocean with a latitudinal and longitudinal resolution of 1.0° and
60 vertical layers with the bottom level at 5500m. Annual data outputs
from CESM were available through 2012. Mean values from the final
year were used to parameterize the species distribution model for
2013–2015.

2.3. Longline simulation model

The core element of the longline simulator is the catch on a single
hook of a longline set. The catch is a probabilistic event and is simu-
lated for each hook of each set. The X–Y spatial structure of the simu-
lator is from 35 °S to 55 °N latitude and 95 °W to 20 °E longitude, ex-
clusive of major land masses. This area is broken down into 7067 cells;
each cell is 1° of latitude by 1° of longitude. Each longitude-latitude cell
is also divided into 46 depth strata of unequal size, corresponding to theFig. 1. Locations of simulated fishing sets for all years (1986–2015).
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Fig. 2. Standardized trends for population 1 for all analysts. Environment lines signify that one or two environmental terms were included in the final model. Gear
models contain only variables associated with gear type and the factors or variables that are traditionally contained in CPUE standardization models. Population is
the true population trend.
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Fig. 3. As for Fig. 2, except for population 2.
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environmental depth data. Conceptual details are presented in
Goodyear et al. (2017) and Forrestal et al. (under review) but funda-
mentally involve the integration of population size, an essential gear
coefficient (k) and a habitat coefficient (w) for each set. The habitat
coefficient integrates the hook-depth probabilities at depth for each
hook on a simulated set with the species relative density at the latitude
and longitude of the set in each of the 46 depth layers apportioned by
the proportion of the set that fishes at that depth in hours, separated
between daylight and darkness.

2.4. Data analysis

The longline simulator outputs a catch by set file with column
headings typically observed in pelagic longline fishery logbook data.
For this exercise, the variables included with the number of blue marlin
caught were: total number of hooks, hook type, bait type, number of
light sticks, hooks between floats (HBF), month, year and latitude and
longitude (Table 1). Hook type had four levels: circle hooks, J-hook, a
combination of circle and J-hook and unknown hook type. Bait type
used was artificial, live, dead or unknown. The light sticks were binned
values corresponding to unknown light sticks reported, zero light sticks
deployed, 1–500 and 501–1500 light sticks. Hooks between floats
numbered between 2 through 6. These variables are referred to as the
gear variables and include those that are traditionally used for CPUE
standardizations. The sea surface temperature (SST) and the dissolved
oxygen (DO) at the surface for the location, month and year from 1986
to 2012 were also supplied from the outputs of the CESM and are re-
ferred to as the environmental variables. While the SST and DO were
available from the model by depth, only the surface data were included
to mimic the type of data available for CPUE standardization. All si-
mulated fishing sets were included in the final data set, including those
that did not catch blue marlin.
Four simulated catch datasets corresponding to the alternative po-

pulation trends were distributed to eight analysts across several ICCAT
contracting or cooperating countries (i.e., CPCs). These analysts have
extensive knowledge and experience developing standardized indices of
abundance from fisheries-dependant CPUE data. The work was carried
out in a blind-study approach, the analysts were not aware of the true
population trends or the species being simulated in the dataset. The
analysts developed their own approach to the data without consultation
with the authors or the other analysts (Table 2). Some analysts provided
more than one standardized index for each population due to their
personal preference. The details of each analyst’s approach are sum-
marized below. Analysts 1–3 did not have access to population 4 as this
dataset was developed later in the study.

2.4.1. Analyst 1
Analyst 1 used a delta lognormal approach in R to standardize

CPUE. Factors were included if they explained at least 5% of the

variance. Any two-way interactions that explained at least 5% of the
variance were included as random effects, using the glmer function in
the lme4 library for R (Bates et al., 2015).
The CPUE of blue marlin was calculated as catch per thousand

hooks. The potential explanatory variables were year (1986–2015),
hooks between floats (either as a number, centered by subtracting the
mean or as a factor), area (the 9 ICCAT areas for billfish; ICCAT, 2016,
Online Supplementary Fig. 1), season (months 1–3, 4–6, 7–9, 10–12),
bait type (4 levels), hook type (4 levels) and light sticks (4 levels). Sea
surface temperature and DO were not available for all years, so they
were only used in alternate runs ending in 2012. Both variables were
coded as factors (SST < 15, 15–20, 20–25, 25–30, DO < 4.5,
4.5–5,> 5) (Table 3).
The gear variables were not evenly distributed in time and there

were many combinations of variables that did not exist. Therefore,
some factors were combined or eliminated before running the models.
Data from the South Atlantic (ICCAT billfish areas 96 and 97; Online
Supplementary Fig. 1) was excluded since there were very few ob-
servations, with none in recent years. Hook types 2 and 5 and bait type
1 and 3 were excluded due to low numbers of observations. The final
dataset included 96.5% of the total observations for all populations. The
trend in CPUE was calculated as the probability of presence (calculated
as the inverse logit of the year effect in the binomial model) times the
mean CPUE when present (calculated by converting the year effect in
the model from normal to lognormal). The Lo et al. (1992) method was
used to calculate the standard errors.

2.4.2. Analyst 2
Analyst 2 used a negative binomial GLMM to standardize the catch

in number, with effort taken to be an offset. The models were run
consecutively in R using the MASS, nlme and lme4 packages (Pinheiro
et al., 2017; Venables and Ripley, 2002). Latitude and longitude were
grouped into four areas (SE, NE, SW, NW) and months were grouped
into quarters. This analyst used four models including a full model that
contained year, area, quarter, hook type, bait type and light sticks. This
model was repeated with the inclusion of sea surface temperature. This
analyst did not use dissolved oxygen as it was highly negatively cor-
related to sea surface temperature. SST was treated at a continuous
variable. The final two models contained year, area and quarter with
and without SST. An offset term of the natural log of total hooks was
used in the both the simple and full model.
Interaction effects were not used for any of the models. Deviance

explained was used as the main model selection criteria along with
ANOVA and F tests (at the 0.05 level). The year effects were estimated

Table 1
Available variables to the analysts, if they were categorical or continuous and
the levels or range included. Latitude and longitude in one ° cells, HBF=hooks
between floats, SST (°C)= sea surface temperature, DO (mg/L)= surface dis-
solved oxygen.

Variable Type Range

Year Categorical 1986–2015
Month Categorical 1–12
Lat. Continuous −30 °S–53 °N
Long. Continuous −95 °W–15 °E
HBF Categorical 2–6
Hook Categorical 1–4
Bait Categorical 1–4
Lights Categorical 0–4
SST Continuous 2–31
DO Continuous 4–8

Table 2
Model format for each analyst. The method used to select the variables within
the final model structure are listed under “Criteria” (AIC=Akaike information
criterion; BIC=Bayesian information criterion; LRT=Likelihood ratio test).
The column “Environment” denotes if environmental variables were included in
the final model, if “Both”, then the analyst conducted two standardizations, one
with the environmental variable and one without.

Analyst Model Program Criteria Environment

One Delta Lognormal
GLMM

R 5% deviance
explained

Both

Two Negative Binomial
GLM

R 5% deviance
explained

Both

Three Delta Gamma GLM R AIC Both
Four Delta Lognormal

GAM
SAS None Yes

Five Delta Lognormal
GLMM

SAS AIC, BIC, χ2 Yes

Six Tweedie GLM R LRT, AIC, pseudo R2 Yes
Seven Delta Lognormal

GLM
R 5% deviance

explained
No

Eight Delta Lognormal
GLM

SAS 5% deviance
explained/df

Yes
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from the marginal mean in R given all other factors and variables.

2.4.3. Analyst 3
Generalized linear models were run in R using the packages lsmeans

and glmmADMB (Fournier et al., 2012). First, the annual CPUE ob-
servations were plotted as histograms to examine distribution shape
and determine candidate models for estimating index variance. Good-
ness-of-fit tests (chi-squared for discrete distributions, and Kilmogorov-
Smirnov for continuous distributions) were run to evaluate the best-fit
model to the observed data. The samples were assigned to spatial zones
defined by the Southeast Fishery Science Center (Online Supplementary
Fig. 2). From there, a delta gamma model was selected that included
year, month, area, and all gear variables as factors. Model performance
was assessed by model convergence and residual error distribution. The
model structure was the same for the model that contained environ-
mental data. Sea surface temperature was treated as a continuous
variable, and dissolved oxygen was not used as it was found to be
correlated to sea surface temperature (Table 3). The binomial model
and the gamma model used all the factors with single term fixed effects.
No interaction terms were used, and no observations were discarded.
Temporal trends in samples sizes indicated an imbalance or temporal
shift in the distribution for several factors, particularly gear, hook type,
bait, hooks between floats, and area fished. This diagnostic was used as
a principle tool to select factors for inclusion in the standardization
model. The final model covariates were selected primarily by ex-
amining boxplots of the mean and variance of CPUE observations across
model factors to examine which covariates appeared to influence CPUE
and varied in sample distribution over time and secondarily, Akaike’s
Information Criterion (AIC) of nested models.

2.4.4. Analyst 4
This analyst was the only one to utilize a Generalized Additive

Model (GAM). SAS® was used as the statistical software (Schlotzhauer
and Littell, 1997). The GAM models were used in the delta lognormal
framework to develop indices. The models applied to each population
were the same and incorporated environmental variables. Smoothing
splines were applied to SST, hooks, latitude, longitude, surface DO,
light sticks and hooks between floats (HBF). Months, years, bait type
and hook type were treated as categorical variables. The success com-
ponent was modeled using a binomial distribution and the abundance
component was modeled using a Poisson distribution.

2.4.5. Analyst 5
Analyst five used a delta lognormal approach implemented using

Generalized Linear Mixed Models (GLMM). Analyses were conducted
using the glimmix and mixed procedures from the SAS® statistical com-
puter software (Schlotzhauer and Littell, 1997). This analyst employed
an extensive graphical exploration of the datasets, including a spatio-
temporal analysis to define geographical areas and seasonality of the
fishery (Online Supplementary Fig. 3). The relationship between po-
tential factors and the nominal ln(CPUE) of the positive sets were ex-
amined using proportional boxplots. Bivariate plots were used to ex-
amine the relationships between the ln(CPUE) and the environmental
variables paired with smoothing fits. The selection of the final model
was based on AIC, BIC, and a χ2 test of the difference between the [–2
log likelihood] statistic of a successive model formulations (Littell et al.,
1996). Interaction effects were used, and they were assumed to be
random. The model structure was constant across all four populations
(Table 3) and one standardized trend was obtained for each population
that contained both the gear and environmental variables (Fig. 4).
Relative indices for the delta model formulation were calculated as the
product of the year effect least square means (LSmeans) from the bi-
nomial and the lognormal model components. The LSmeans estimates
use a weighted factor of the proportional observed margins in the input
data to account for the non-balance characteristics of the data. LSMeans
of lognormal positive trips were bias corrected using Lo et al., (1992)Ta
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Fig. 4. As for Fig. 2, except for population 3.
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algorithms.

2.4.6. Analyst 6
Analyst 6 used a Tweedie Generalized Linear Model; analyses were

conducted using R and the tweedie (Dunn and Smyth, 2005, 2008),
lsmeans (Lenth, 2016) and mfp (Ambler and Benner, 2015) packages.
The Tweedie GLM approach does not split the response variables into
success and abundance of CPUE and then apply two separate models as
is the case with the delta approach used by other analysts (Table 4). The
only response variable was CPUE measured as number of blue marlin
caught per 1000 hooks, which is a continuous variable with an added
mass of zeros for the cases of sets with zero catches. The categorical
variables included in the final model were: year, month, light, hook
type, bait type and hooks between floats. The spatial variables latitude
and longitude were grouped into categorical areas using regression
trees, according to the method developed by Ichinokawa and Brodziak
(2010). The environmental variables sea surface temperature and dis-
solved oxygen were used as continuous variables transformed with
fractional polynomials, using the method developed by Royston and
Altman (1994).
Initially, univariate models were applied for each candidate vari-

able. Significance for inclusion were likelihood ratio tests comparing
univariate models to the null model. All significant variables (5% level)
were then used for a multivariate model. In the multivariate model, the
final significance of each variable was analyzed using deviance tables,
AIC and pseudo R2. The final models were slightly different for each
population as the area categorizations and polynomial transformations
were specific to each population dataset (Table 4). No interaction ef-
fects were used due to computational restraints. The year effects were
extracted in the same manner as analyst 3.

2.4.7. Analyst 7
This analyst used a delta lognormal GLMM approach to standardize

the CPUE data. The statistical software employed was R with the glmer
function of the lme4 package (Bates et al., 2015). None of the models
included environmental variables due to computational constraints and
the lack of environmental data in the most recent years. Latitude and
longitude were grouped into three areas, a northern region (including
the Gulf of Mexico), a southern and a Caribbean region. Successes were
modeled using a binomial distribution, and abundances using a Gaus-
sian distribution. Variables were included in the final model if they
explained 5% or more of the deviance. The models used to standardize
populations 2, 3 and 4 were the same while the model applied to po-
pulation 1 contained interactions between year and some of the other
explanatory variables (Table 3). If interactions with year were sig-
nificant, they were treated as random effects. But in most cases, inter-
actions could not be tested due to lack of computing power. The year
effect was extracted by taking the year coefficients in both models and
then transforming and corrected them according to Lo et al. (1992).

2.4.8. Analyst 8
Analyst 8 used a delta lognormal GLM approach. The analyses were

conducted using SAS proc glimmix for the binomial component and SAS
proc mixed for the lognormal component. This analyst developed eight
models, a different model for each population and models with and
without the environmental variables (Table 3). Latitude and longitude
were grouped into the US pelagic longline logbook areas (Cramer,
1993). The Goodman (1960) exact method for calculating the variance
of two independent random variables was used to obtain the variance.
Two methods commonly employed to select models were used; the
method of Ortiz and Arocha (2004), which uses the percent reduction in
explained deviance to select factors that explain greater than a certain
percentage and the method of Brown (1992), which uses the percent
deviance reduction per degree of freedom. A 5% cut-off was used for all
models, which is commonly used for each method. Environmental
variables were originally entered as categorical and were changed to
continuous (SST*SST and surface DO) due to model fitting issues. The
yearly index was extracted using the SAS lsmeans statement.

2.4.9. Analysis of standardized trends
Standardized trends from the eight analysts and the true population

trends were normalized to the mean to examine differences amongst the
time series. The normalized, modeled CPUE trends were regressed to
the normalized, underlying population trends. Root mean square errors
(RMSEs) were estimated using residuals between the population trend
and the standardized CPUE to quantify the accuracy of each standar-
dization. Further examination of model fits were estimated using the
median absolute relative error (Ono et al., 2015, Online Supplementary
Table 1). The average RMSE for all analysts within populations for
models with and without environmental variables were compared with
a t-test or Mann-Whitney U. The mean standardized trends with and
without environmental covariates were plotted using ggplot2 and
Hmisc packages (Wickham, 2009; Harrell, 2017).

Table 4
Final model selection for analysts using negative binomial (Two) and Tweedie approaches (Six). All variables were fixed effects. See text for how each analyst defined
each variable.

Analyst Population Final Model

Two (1) All year+ quarter+ area+offset(ln(hooks))
Two (1) All year+ season+ area+ SST+offset(ln(hooks))
Two (2) All year+ season+ area+ gear+ light+HBF+hook+bait+ offset(ln(hooks))
Two (2) All year+ season+ area+ gear+ light+HBF+hook+bait+ SST+ offset(ln(hooks))
Six 1 year+month+ light+ hook+ bait+HBF+ area+ SST3+ SST3*log(SST)+ log(DO)+DO0.5

Six 2 year+month+ light+ hook+ bait+HBF+ area+ SST3+SST3*log(SST)+DO3+DO3*log(DO)
Six 3 year+month+ light+ hook+ bait+HBF+ area+ SST3+ SST3*log(SST)+DO3+DO3*log(DO)
Six 4 year+month+ light+ hook+ bait+HBF+ area+ SST3+ SST3*log(SST)+DO−2+DO−2*log(DO)

Table 5
Root mean square errors for model fits to the true population trends.

Population 1 Population 2 Population 3 Population 4

Gear Enviro. Gear Enviro. Gear Enviro. Gear Enviro.

Analyst 1 0.288 0.252 0.193 0.271 0.327 0.274
Analyst 2 (1) 0.222 0.016 0.330 0.313 0.422 0.431
Analyst 2 (2) 0.016 0.016 0.349 0.304 0.420 0.400
Analyst 3 0.328 0.101 0.101 0.129 0.105 0.146
Analyst 4 0.238 0.169 0.272 0.229
Analyst 5 0.176 0.176 0.304 0.193
Analyst 6 0.086 0.104 0.120 0.102
Analyst 7 0.235 0.110 0.333 0.195
Analyst 8 0.277 0.255 0.345 0.132 0.281 0.121 0.266 0.461
Mean 0.228 0.156 0.238 0.199 0.315 0.258 0.231 0.246
SE 0.045 0.036 0.048 0.029 0.048 0.043 0.036 0.077
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3. Results

3.1. Population 1

Population 1 led to the lowest average RMSE of the four populations
examined for the model types that included only gear variables and
those with environmental variables added (Table 5). The models that
contained environmental variables had lower RMSE for all the analysts
that examined both model types. However, there was no difference
between the models that used the environmental models and those that
did not (two-sample t (12)= 1.49, p=0.16, Table 5). Two general
patterns emerged from examining the standardized CPUEs in compar-
ison to the population trends: (1) standardized CPUEs that fluctuated
around the true population and (2) an overestimation of population size
in the start of the time series and an underestimation beginning in
2002. The five models that underestimated the true values after 2002
did not include hook type in their final model. The exception to this
trend was analyst 4 who did include hook type in the final model
structure. This analyst was also the only one to use a GAM approach.
The trends obtained by analysts 1, 2, 4, 7 and 8 exhibited a drop in

population size in 2002 that did not occur in the true population trend
(Fig. 2). Analyst 1 noted that hook type was not used in the final model
as it did not explain more than 5% of the deviance observed. Analyst 2
used the environmental data in a model with only year, quarter and
area (SE, NE, SW, NW) as factors and a full model with all possible
variables (models environment 1 and 2 respectively, Fig. 2). The sim-
pler model with environmental data had the drop observed in 2002.
However, adding the environmental data smoothed the trend out even
though hook type was not included. Both versions of the complete
model (Gear 2 and Environment 2) had a very close agreement to the
true population trend time series.
exc time series obtained by analyst 3 fluctuated around the true

population trend as did analyst 6′s time series. However, the error was
lower for analyst 6. This pattern was also observed in three of analyst
2′s models although those standardized trends did not fluctuate around
the true population. The RMSE for those three models were the lowest
across all models and populations.
Analyst 5′s standardized time series also fluctuated around the true

population. However, starting in 2012, the standardized trend greatly
overestimated the true population size. This analyst utilized SAS and
incorporated the environmental variables into the final model. The
environmental data points did not extend past 2012. Analysts that used
these variables truncated the standardized CPUE at 2012 to account for
the shorter time series. This was either discovered through an initial
exploration of the data or, if R was used as the statistical software, the
software automatically excluded records with data, in this case, en-
vironmental data. However, analyst 5 used SAS which runs with years
that contain missing data but uses the average value of the missing
variable; this resulted in predictions for these years diverging from the
true values. There are estimated values from the model including en-
vironmental effects in the 2013 and 2014, but they are highly un-
certain. This occurred with all models across the four populations for
analyst 5. For comparison purposes to other analysts, the model re-
siduals used in the RMSE analysis were from 1986 to 2012.

3.2. Population 2

The population 2 dataset contained a declining population trend
and all the analysts were able to capture the decline. In general, the
standardized CPUE overestimated the true population size in the ear-
liest years of the dataset. However, in the most recent years, the ana-
lysts either accurately estimated or underestimated the true population
size. As was observed in population 1, the models with the environ-
mental variables had a non-significant lower average RMSE than those
models that did not incorporate the environmental covariates (Mann-
Whitney U=18.0, n1= 6, n2= 8, p=0.49, Table 5). However,

whether environmental variables reduced RSME varied by analyst.
Models including the environmental variables had a higher RMSE for
analysts 1 and 3, but not for analysts 2 and 8 (Table 5).
Analyst 1 treated hooks between floats as a factor for population 2

as the relationship between HBF and CPUE was not as clear for in po-
pulation 1. Analyst 8′s binomial gear model only contained year and
area.
The time series obtained from analysts 1, 2, 4, 5 and 8 did not match

the true population trend in the earliest years (1986–1993), which
corresponded to the highest CPUE values (Fig. 3). In later years, the
modeled trends converged on the true population trend for analysts 3, 6
and 7. Analysts 1, 2, 4, and 8 underestimated the true population size in
the most recent years. The time series from analyst 5 followed the true
population trend before the extreme values began in 2013.

3.3. Population 3

Population 3, which had an increasing population size, had the
largest discrepancy between modeled values and the true population
values as measured by the RMSE (Table 5). As with populations 1 and 2,
the environmental models had a lower error than the gear models, but
again the difference was not significant (two-sample t (12)= 0.87,
p=0.40, Table 5).
The model produced by analysts 1, 2, 4 and 7 overestimated the

population size in the earliest years and underestimated in the later
years (Fig. 4). The environment models for analysts 3, 6 and 8 all had
very similar patterns, closely following the true population trends from
1986 to 2002 and then exhibiting a spike of overestimation in 2008 and
again in 2012. The gear models for analysts 1, 2, 7 and 8 under-
estimated the true population size starting in 2004; the inclusion of
environmental variables corrected the underestimation in analyst 8′s
model, but not for analysts 1 and 2. An examination of the mean
standardized trends shows an overall overestimation of the earliest
years population for both the gear and environmental models and an
underestimation of both models beginning in 2004. However, the en-
vironmental models track closer to the true population trend (Fig. 6).

3.4. Population 4

There are results from five analysts for population 4 as opposed to
eight for the other populations. This is the result of this dataset being
distributed to the analysts later in the study. This dataset represents a
fluctuating population with two occurrences of population decline and
resurgence. For this population, the gear models had a lower mean
RMSE than the environment models, although this was not significant
(two-sample t (4)=−0.135, p=0.89, Table 5).
Analyst 6 and 7 were able to track the true population’s fluctuations

quite well (Fig. 5) while analysts 4 and 8 overestimated population size
in the first year and then underestimated population size starting in
2005. Analyst 5 was able to capture the initial population trend quite
well before a similar underestimation of the population starting in
2005. The two mean model trends were quite similar from 1986 until
1995, with the environmental model tracking closer to the true popu-
lation trend from 1995 to 2005. After 2005, both models under-
estimated the true population with very similar observed patterns
(Fig. 5).

4. Discussion

The aim of this study was to examine some of the methods em-
ployed by ICCAT CPC scientists who are routinely tasked with creating
indices of abundance for the fisheries they participate in and to de-
termine if these methods were able to reliably capture the underlying
population trend in the provided datasets. The results of this work
highlight the wide range of standardization approaches taken as a result
of each ICCAT member country conducting their own analysis. The
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strengths of the ICCAT approach is that it is an inclusive process that
subjects the analysis to review from other national scientists and allows
those that are most knowledgeable about the fisheries to conduct the
analyses. However, the weakness of this approach is the use of various
methodologies can lead to conflicting CPUE trends that may or may not
be reflective of the true biomass. Other tuna regional fishery manage-
ment organization (tRFMO; e.g., WCPFC – Western and Central Pacific
Fisheries Commission) differ from the approach of having each CPC
scientist produce standardized CPUE trends and instead utilize the
tRFMO Secretariat or the services of other advice bodies, such as SPC
(Pacific Community). This leads to consistent standardization techni-
ques applied over different datasets and over time. However, weak-
nesses of this approach are that it tends to exclude member countries’
scientists, and the analysts conducting the analysis may not have the
same level of understanding of the fisheries as member country

scientists. An effective compromise between these differing approaches
may involve having the national scientists conduct their own analyses,
but with generally consistent and agreed upon methods of standardi-
zation.
While the analysts’ approach to the data and the modeling structure

differed, most models were able to capture the underlying population
trends well. However, differences in performance highlight the im-
portance of how spatial dimensions are defined, how categorical vari-
ables are grouped, how continuous variables are modeled and, im-
portantly, the criteria for model selection. The analysts used different
area combinations for the spatial structure of their models, some
grouping latitude and longitude according to the ICCAT areas for bill-
fish, and others using the raw 1×1° latitude and longitude values.
Analyst 6 utilized a regression tree approach, which led to different
area groupings for each population. Analyst 2 used the spatial domain

Fig. 5. As for Fig. 2, except for population 4. Note results are only shown for five of the analysts.
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of the observations to define four areas of equal quadrants based on the
magnitude of effort. The variables included in the final model also
differed between analysts. Hook type was excluded from the models
developed by several of the analysts. Nominal catch rates for population
1 were higher, prior to the switch from J-hooks to circle hooks in 2004
and then were systematically lower than the true population CPUE.
Models that failed to include hook type often failed to re-create the true
population trend. Analyst 8 conducted model selection independently
for each population, noting that models did not converge when hook
type was included.
The addition of environmental variables improved the accuracy of

estimates of the population size across all populations with a few ex-
ceptions, such as when SAS filled in missing data with mean environ-
mental values for analyst 5. The inclusion of these variables in the cases
of analyst 1 for population 2 and all the populations for analyst 3 re-
sulted in a higher RMSE values and these models did not follow the true
population values as well as the models that did not contain the en-
vironmental variables. Environmental variables are thought to be good
predictors of density of a species in the vicinity of the set and/or hook.
Environmental variables that determine suitability of adjacent habitat
should improve estimation of CPUE by accounting for differential
availability of a species in the vicinity of the set and/or hook. However,
given the linear nature of GLM models, suitable transformation of the
data (continuous explanatory variables) may be necessary, such as
polynomials (e.g., SST*SST2) to mimic species’ habitat preference
curves. Also, the values of environmental variables at the surface may
not be highly correlated with the values at depth that influence species’
distributions. Future studies should take advantage of the CESM data
outputs at the actual depths where blue marlin and the hooks are lo-
cated.
While the use of environmental variables increased accuracy, their

inclusion also increased the annual CVs compared to the models

without the environmental variables (e.g. see CVs for analyst one,
Online Supplementary Table 2), likely due to the added requirement of
estimating a relatively imprecise relationship between catch rates and
SST or DO. In theory, a strong relationship between a species density
and environmentally-mediated habitat suitability may exist and is a
fundamental part of the species distribution model (Goodyear et al.,
2017). However, within the statistical models estimated in this exercise,
this relationship is estimated from noisy CPUE data which may lead to
relatively imprecise parameter estimates in the models and higher CVs
as compared to not including SST or DO. Additionally, if there is in-
sufficient contrast in the data to estimate the coefficients related to the
environmental predictor variables, the estimates may be very im-
precise, and possibly biased. This could be the case with fishery-de-
pendent data where fishers may only fish in good temperature windows
so the necessary contrast to estimate a CPUE-SST relationship is
missing. Further improvements in the concept of habitat modeling such
as occupancy modeling or use of ancillary information from tagging or
tracking in the form of Bayesian priors may provide improvements in
both the accuracy and precision of CPUE-based abundance indices
when including environmental data.
The inclusion of the environmental variables caused a problem for

the SAS-based analyses. Incomplete SST and DO values for the last three
years caused the models of analyst 5 to diverge substantially from the
true values. Most analysts did not, or their software packages could not,
estimate the year effects for the years with the missing environmental
variables. The SAS models converged, but estimates for the last three
years were incorrect (2013–2015). This situation highlights the pro-
blem that missing data creates for CPUE standardization.
Environmental data such as SST, DO, etc. are likely to be missing, due
to either not being recorded, or, if assigned based on satellite oceano-
graphy, missing due to cloud cover. Hence missing data are common-
place and the model results can depend upon how the missing data are

Fig. 6. Mean standardized trends for all analysts. Shading surrounding lines is the standardized error around the mean.
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treated. It is therefore critical to examine a priori whether missing data
exists and to decide how it is going to be treated rather than allowing
software to use default settings.
The poor performance of some models implies that standard model

selection criteria such as those based on either a 1 or 5% reduction in
deviance per degree of freedom can often fail to select key factors, in
this case, hooks between floats or hook type, that affected catchability.
Hook type had a substantial impact on CPUE in the true populations.
Hook type in the fishery changed as a result of regulations from J-hooks
to circle hooks in 2004. This shift in hook type resulted in a substantial
decrease in the nominal CPUE relative to the true populations and was
manifest in all of the four populations. Unfortunately, the knife-edge
change in hook type meant that the years pre- and post-2004 and hook
type did not overlap, causing hook type not to be selected using de-
viance explained. This result illustrates model selection methods based
only on reduction in deviance may be prone to error regarding factor
exclusion and that analysts should err on the side of keeping factors in
the models. This is particularly the case if a priori exploratory analyses
or knowledge of the fishery indicate that the variable could affect
CPUE, which is surely the case with hook type or hooks between floats.
Ortiz and Arocha (2004) found that variables that explained more than
5% of total deviance were generally significant according to likelihood
ratio tests, which supports the use of 5% deviance explained in model
selection. However, this selection method supports models with fewer
variables than the AIC and BIC, which frequently include variables that
are not significant in the best models. It should be noted that model
selection criteria such as AIC and BIC supported including hook type.
These methods of model selection have a better theoretical basis than
ad hoc methods such as deviance explained, so more frequent use of
them is warranted (Gelman et al., 2014). Our results indicate that these
more complex models were better at predicting the overall trend,
supporting the use of information criteria rather than deviance ex-
plained in CPUE standardization. While including many variables in a
model may result in decreased model performance such as failed con-
vergence, requiring selection of a subset of variables, most fishery-de-
pendent CPUE standardization data sets have very high sample sizes
relative to the number of model factors so over-parameterization is
rarely a concern.
Residual patterns emerging from the model fits to population 2 (the

decreasing population) were a possible indication of high collinearity
between the year effect and at least one other estimated parameter.
Direct knowledge of the fishery and proper a priori examination of the
raw data was critical in realizing the true population trend was corre-
lated with hooks between floats in post hoc analysis. As the true po-
pulation declined, the average depth of hooks increased. Strong colli-
nearity between the year effect and other parameters can lead to
confounding in parameter estimates and thus an inability of the model
to distinguish between the correlated trends and produce an accurate
estimate of the true population trend. However, this association could
not have been detected without knowledge of the true population trend.
Thus, collinearity between factors and the year effect needs to be in-
ferred rather than detected by a means dependent on knowledge of the
true population trend.
Three analysts modeled the population with several year× factor

interaction terms, which cause problems for interpretation of strict year
effects (Maunder and Punt, 2004). Certain non-year interactions, such
as month× area or area× season could be manifestations of the mi-
gratory behavior of blue marlin. The month factor signifies something
different in a northern region than in a southern region, which is
straightforward to explain. In contrast, interactions with year are
harder to explain, and represent a potential confounding of the abun-
dance signal with another model factor, such as gear changes or en-
vironment.
A common approach when year× factor interactions are significant

is to model them as random effects as was done by several analysts.
Unfortunately, modeling year× factor interactions as random effects

can lead to several problems. First, random year× factor interactions
can affect the parameter estimates for other variables. Second, it is
important to plot year× factor parameter estimates and their standard
errors to determine if they are actually random and not showing trends
with respect to either year or the other variable in the interaction.
Given the potential for serial depletion (Walters, 2003) or range shifts
in populations due to climatic factors and the high probability of
models finding spurious year× factor interactions, plots of the inter-
action terms provide critical information about patterns in these in-
teractions. Truly random interactions would look random or would fail
to reject a test of randomness. Significant interactions could exist as a
single outlier year, which might not merit modeling or substantially
trended interactions with year which require additional considerations
as to why the population signal differs with different values of another
factor. While several analysts used interaction terms, the interactions
did not consistently improve the accuracy of the estimated trends. Fu-
ture studies employing a factorial design to specifically compare dif-
ferent model types will further explore the use of interaction terms.
Several of the results point to problems in current CPUE standar-

dization approaches. The different performance of standardization
methods, and the different performance with different methods for
defining geographical areas raise some concerns about the ability of
models to estimate population trends. Using an adaptive area parti-
tioning method, Analyst 6 estimated different spatial partitioning for
each population, even though each population had the same model
factors operating and the same spatial structure. This indicates a pos-
sible dependence between the population trend and the estimation of
the model parameters other than the year effect which is intended to
capture the trend. It may be possible to diagnose adverse correlation
between year and other factors by examining variance inflation factors
(VIFs) or by examining the covariance between ‘year’ and other model
coefficients. High VIF or high covariance with year indicate that the
model cannot separate the abundance trend from a trend in other model
factors.

5. Conclusions

This study with simulated longline datasets sought to determine if
standardization methods used by the ICCAT CPCs scientists can routi-
nely capture underlying population trends from fishery-dependant
CPUE data and to derive a set of ‘best practices’. Overall, despite the
diversity of distributional assumptions, model selection methods, soft-
ware and treatments of variables, most models were able to capture the
underlying population trends. The inclusive stock assessment practice
utilized by ICCAT allows the scientists most familiar with the specific,
regional fleet to develop standardized CPUE time series that are then
used as proxies for relative abundance trends in the stock assessment
models. The downside to this practice is the wide variation in metho-
dology, which may contribute to conflicting trends for the same species,
and may be an artefact of standardization methodology rather than a
true difference in signal between datasets. Thus, it is important that
standardization methods be reviewed carefully before indices are used
in assessment, and that multiple methods be applied to the same da-
tasets to identify whether estimated trends differ with standardization
methodology.
This exercise highlights that there are several problems with some

of the status quo approaches that warrant further exploration: unknown
correlations between model factors and the year effect that can con-
found estimation of the population signal, the usefulness of standard
model selection criterion to choose the correct models, and the dangers
posed by missing data depending upon how a modeling platform deals
with it.
As a result of this work, we have developed a set of lessons learned:

1) Priority of variable inclusion or exclusion should be based on a first
principles knowledge of the fishery and the historical management
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measures that have taken place. If known changes in the fishery
have occurred (e.g., changes in legal retained size, geographic dis-
tribution of fish and/fishery, changes in gear type) then these
variables should be given the highest consideration for inclusion,
whether or not model diagnostics support their inclusion.
Alternatively, in cases where such variables cannot be accom-
modated in the statistical models due to technical issues, the CPUE
series may have to be split and modeled as several independent time
series to reflect those unaccounted changes in catchability.

2) A priori evaluation of model balance across factor combinations over
time and plots of CPUE time series by model factors are absolutely
critical to determining which model factors are important or
missing. This procedure would have captured the knife-edge switch
in hook types in 2004 and the missing environmental data.

3) Evaluation of multiple-collinearity of model variables with the year
factor is essential. Strong collinearity with the year effect results in a
GLM not being able to distinguish between inter-annual changes in
abundance and those in the correlated variable.

4) Embrace divergence of the nominal CPUE from the standardized
model estimate. Often, the observation is made that the standar-
dized trend diverges from the nominal as a shortcoming against the
model selected. The lack of divergence between nominal and stan-
dardized trends is often used as a post hoc diagnostic of model
performance. In the examples within this study, the only way to
have obtained the correct estimate of the true population was to
depart substantially from the nominal trend.
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