

Bayesian Inference

- Contrasts with 'classical' (frequentist) statistics
- Key difference is how
'uncertainty' is handled

$$
\begin{aligned}
& \text { P - probability } \\
& H \text { - hypothesis } \\
& D \text { - data }
\end{aligned}
$$

Frequentist:

- Model parameters are fixed, but unknown
- Uncertainty is expressed as variability in hypothetical data sets: $\mathbf{P}(\mathrm{D} \mid \mathrm{H})$
- Make probability statements about the data, not model parameters
- Adequacy of a model tested with hypothesis testing and P-values; based on the repeatability of observing the data given the model
- What is a P-value?
"if we were to repeat an experiment a large number of times, then in 5% of cases we would get a larger t-value"
- It does not mean: "there is a 95\% probability the regression parameter lies between x and $y^{\prime \prime}$
- Compatibility of the data with the null hypothesis
- Fisher believed a P value was a rough guide of the strength of evidence against the null hypothesis
- $P<0.05$ shows we should repeat the experiment - if subsequent studies also 'significant', unlikely to be chance
- Does not provide the probability of the null hypothesis

Bayesian:

- Assume model parameters are unknown (and vary), but we can estimate their distributions with data, which are fixed: $\mathbf{P}(\mathbf{H} \mid \mathrm{D})$
- Can make statements about model parameters with confidence
- Based on Bayes theorem - permits prior information

Baye's rule

- Obtain a 'posterior probability' based on:

1. prior probability
2. likelihood function

Some history

- Reverend Thomas Bayes (1701-1761)
- We know little about him
- Established a mathematical basis for probability inference
- the probability that an event will occur in the future, based on the frequency with which it occurred in prior trials

More history

- The same idea independently devised by Simon Laplace (1749-1827)
- Formalised Baye's theorem
- Only possible to apply to simple problems
- New mathematical techniques (MCMC and Laplace approximation) + fast computers now enable us to estimate Bayesian 'posterior probability'

Likelihood

 How probable is the data if the hypothesis is true?Prior
How probable was the hypothesis before collecting data?

$P(H \mid D)=\frac{P(D \mid H) .}{P(D)}$

Posterior
How probable is the hypothesis given the observed data?

Marginal
How probable is the new data for all possible hypotheses?

Why use Bayesian inference?

- Directly calculate the probability that an hypothesis is true
- We can have multiple well-defined hypotheses
- We can incorporate prior information ('priors')
- With few data, but good priors, we can draw sensible conclusions
- For some analyses there is no alternative

Disadvantages

- Priors are subjective (that is also an advantage)
- Calculations are computationally intensive (e.g. using MCMC, though INLA is not)
- Journal reviewers in fisheries biology don't understand it! (they are learning)

Choice of priors

- Key point in Bayesian inference - 'Expert' opinion
- Published studies/data
- Empirical data-derived priors
- Controversial

Advantage of informative priors

- Increase model precision
- Reduced sample size

Disadvantages?

- Potential reduced accuracy
- (Though evidence suggests not)

Time series analysis

- Wide variety of techniques (and data types)
- A goal of time series analysis is forecasting

Time series analysis

- A set of observations collected at regular intervals
- Ideally at least 15 measurements
-Trends are forced by persistent effects (such as fishing, habitat deterioration)
- May be linear or non-linear
- Termed 'secular' trends

Time series analysis

- There may be seasonal and or cyclical patterns - consistently recurring
- Seasonal are annual
- Cyclical may be longer than annual
- There may (will) be irregular events imposing additional (unpredictable) variation

Time series analysis

- Observations close together in time tend to be correlated (serially dependent)
- An outcome is temporal dependency (pseudoreplication)
- Like a random effect, we need a temporal dependency structure in our model

Time series analysis

- Model as a 'random walk'
- Population size in 2001 dependent on size in 2000
- (Stock dependency in fisheries)
- Dependency decays with time
- (population size in 2001 less dependent on size on 1990 than 2000)

Time series analysis

- Catch is modelled as a function of:
- intercept
- covariates
- a trend
- noise (mean of zero, normal distribution)

Spatial-temporal model

- Data often sampled at multiple locations through time
- Need temporal-spatial model
- Possible with Bayesian model in INLA See:
Izquierdo et al. (2022). Bayesian spatio-temporal CPUE standardization: Case study of European sardine (Sardina pilchardus) along the western coast of Portugal. Fisheries Management and Ecology 29: 670-680.

Approach

1. Formulate the question

Standardise
CPUE for
Lithuanian
zander catch

