

Model selection

- 1. Controversial area of statistics
- Several alternatives different "schools of thought"
- Depends on your aim in fitting a model
- 4. ...and your study system

I. Hypothesis testing

- Drop least significant term
- Refit model
- Continue until only significant terms
- I suggest never using this approach
 - The best-fitting model may include nonsignificant terms
 - Referees will (rightly) criticize this approach
 - Consider what a P-value actually represents

2. Do nothing

- Perfectly valid (and you can't be criticized for the model selection approach you might otherwise use)
- Illustrates which terms in the model have significance and which don't (this could be your main question)
- A priori you selected certain covariates, so why remove them?
- (do remove collinear terms)

3. Classical stepwise selection

- Use backward (start with full model and remove terms) or forward (start just with intercept and add terms) selection
- Use Akaike Information Criteria (AIC) to arrive at best-fitting model (also BIC, and for Bayesian models DIC, WAIC)

- 4. Information theoretic (IT) approach
 - Formulate (*a priori*) 10-15 alternative models
 - Run all models, then compare using AIC
 - Advocated by respected statisticians (Burnham & Anderson, 2002)
 - A very powerful approach
 -but requires a lot of information/understanding
 - Usually the case in fisheries models

model	fitted model	source	model description
M01	temperature + salinity	Heuts (1947)	average minimum temperature, salinity
M02	presence/absence of fish predators	Hoogland et al. (1956)	vertebrate predation
M03	latitude x longitude	Münzig (1963)	geographical location
M04	temperature	Wootton (1976)	average minimum temperature
M05	presence/absence dragonfly larvae	Reimchen (1994)	invertebrate predation all 15
M06	рН	Giles (1983)	dissolved calcium
M07	elevation	Raeymaekers et al. (2007)	coastal-infland and els and
M08	salinity	Myhre & Klepaker (2009)	water density
M09	presence/absence Schistocephalus solidus	Morozińska-Gogol (2011)	parasitism by Codus pare
M10	presence/absence Pungitius pungitius	MacColl et al. (2013)	competition with <i>P. pungitius</i>
M11	turbidity + presence/absence of fish predators	Reimchen et al. (2013)	light spectra and verte rate product on C
M12	pH + presence/absence of fish predators	Spence <i>et al.</i> (2013)	dissolved calcium, vertebrate predation
M13	pH + presence/absence of fish predators + turbidity	Klepaker et al. (2016)	dissolved calcium, vertebrate predation, light spectra
M14	presence/absence of fish predators + P. pungitius	Magalhaes et al. (2016)	vertebrate predation, competition with P. pungitius
M15	temperature + standard length + pH	this study	average minimum temperature, body size, dissolved calci

My suggestion

- 1. Use IT when possible
- 2. Alternatively, depending on the aims of your study, either
 - Perform no selection, or
 - Manual backward selection
- 3. Avoid using hypothesis testing

How to deal with zero catches?

- **Do not ignore zeros** these are critical data!
- Use an appropriate distribution that can accommodate zero observations
- Simulate from your model to ensure the model accommodates the proportion of zeros in the data
- We will do this (Hilsha analysis)

How many zeros is too many?

- No specific threshold
- Fit model, then simulate from it
- Does the observed number exceed the predicted (by a lot)

What distribution is appropriate for (many) zeros?

- Gaussian (?), Poisson, negative binomial, Bernoulli, binomial
- Model validation: check by simulating from model and compare proportion of zeros in simulated data sets with observed proportion – they should match
- Use 'testZeroInflation' command in 'DHARMa' package
- We will do this (Hilsha analysis)

Why do we get lots of zeros?

- Unsuitable conditions no catch
- Suitable conditions no catch
- Suitable conditions not catchable
- Suitable conditions make error

What type of zeros do you have?

How to handle lots of zeros

- •Fit zero-inflated (mixture) models
- •Fit zero-adjusted (hurdle) models

ZIP, ZAP!

- Zero-inflated models differ from zeroadjusted models
- Zero-inflated models model zeros as counts (some of which are zero)
- Zero-adjusted models explicitly model zeros as a Bernoulli model, and counts (zerotruncated data) using Poisson, NB, Gamma

Zero-inflated models

- Model data in two parts:
 - Binomial part; zeros vs. count (use binomial distribution)
 - Zero-truncated data, using Poisson, negative binomial, gamma
- Able to identify which variables result in a catch (binomial part) and if a catch occurs, the size of the catch (zero-truncated part)
- We will use a ZINB model with the Hilsha analysis

Tweedie distribution

- A family of distributions
- Not widely used
- Easy to implement with the 'glmmTMB' package
- Able to generate a compound Poisson-Gamma distribution

Approach

1. Formulate the question

Standardise CPUE for Bangladesh hilsha catch

