CPUE standardisation

Carl Smith
Centre for Analysis, Modelling and Computational Science University of Łódź Poland
carl.smith@biol.uni.lodz.pl

Organisation

- 2 days
- 8 sessions
- Lots of breaks
- Interrupt
- Ask questions
- Discuss

Czech bitterling

Data set (bitterling.csv) comprising:

- Catch of bitterling as number of fish
- Effort as number of sampling points (points)
- Variation due to different habitat (vegetated, unvegetated), season (spring, autumn), year (1995-1998)
- Samples from 8 different oxbow lakes
- R Script in file Bitterling. R

Approach

1. Formulate the question

What variables
predict variance
in bitterling
catches?

CPUE standardisation

Multiple samples from 8 oxbow lakes

- Catches within oxbow lakes will be more similar than among lakes
- We cannot treat samples from the same lake as 'independent'
- 'Pseudoreplication'
- We have dependency

Dependency

- A common feature of biological data
- Correlation of observations within a group
- Analyses assume independence
- Dependency due to:
- Repeated measures of same individual
- Membership of a group
- Experimental nesting
- Fixed effects and random effects

Dependency

- Fixed effect
- Unknown constant
- Try to estimate from data
- Random effect
- No benefit to estimate
- Instead, estimate parameters for its distribution
- Sometimes difficult to decide if a variable should be classed as random or fixed

Terminology

- Misleading
- Random does not imply random!
- Think of random effects as grouping variables
- Mixed effect models (GLMMs, GAMMs) are really just hierarchical models
- Some special types of dependency
- Spatial
- Temporal
- Both common in ecological/fisheries data

Is it a fixed or random effect?

- Much debated by statisticians
- Only use for factors/categories
- Not continuous data
- Is there dependency?
- In the data
- In the design
- Number of levels
- >4 (ideally >10), treat as random
- 2 or 3 levels, treat as fixed
- Don't use the same variable as fixed and random in the same model (except in very special cases)

Drawback of mixed models

The P-values are not reliable!

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{~B} \mid \mathrm{A}) \mathrm{P}(\mathrm{~A})}{\mathrm{P}(\mathrm{~B})}
$$

(We will use a Bayesian approach with zander data)

Dependency by design

- Catches from the same oxbow more similar than adjacent lake
- Why?
- Food, habitat, mussels, predators, water quality, etc.
- Any other dependency in the data?
- Year
- Population size in 1996 not independent of size in 1995
- But only 4 years of data...so treat as fixed effect (not ideal)

Model these data with GLMM

